Câu hỏi:

12/03/2025 1,990 Lưu

1) Cho phương trình: \({x^2} - 2x + m = 0.\)

a) Giải phương trình (1) khi \(m = 0.\)

b) Biết rằng khi \(m = - 2\) phương trình (1) có hai nghiệm là \({x_1},\,\,{x_2}.\) Không giải phương trình, hãy tính giá trị của biểu thức \(M = x_1^2 + {x_2}^2 - {x_1}{x_2}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Khi \(m = 0\) ta có phương trình \({x^2} - 2x = 0.\)

Giải phương trình: \[x\left( {x - 2} \right) = 0\]

\[x = 0\] hoặc \[x - 2 = 0\]

\[x = 0\] hoặc \[x = 2.\]

Vậy khi \(m - 2\) thì phương trình đã cho có hai nghiệm là \[x = 0;\,\,x = 2.\]

b) Khi \(m = - 2\) ta có phương trình: \({x^2} - 2x - 2 = 0.\)

Áp dụng định lí Viète ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 2}\\{{x_1} \cdot {x_2} = - 2}\end{array}} \right..\)

Ta có: \(M = x_1^2 + x_2^2 - {x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2} = {2^2} - 3 \cdot \left( { - 2} \right) = 10.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Vì \[\widehat {BEC},\,\,\widehat {BFC}\] là các góc nội tiếp chắn nửa đường tròn \(\left( O \right)\) nên ta co

Khi đó \[\Delta AEH\] vuông tại \[E\] nên \[A,\,\,E,\,\,H\] cùng thuộc đường tròn đường kính \[AH.\]

Tương tự \[\Delta AFH\]vuông tại F nên \[A,\,\,H,\,\,F\] cùng thuộc đường tròn đường kính \[AH.\]

Vậy \[A,\,\,E,\,\,F,\,\,H\] cùng thuộc đường trong đường kính \[AH\] hay tứ giác \[AEHF\] nội tiếp.

2) Ta có  (tính chất góc nội tiếp chắn nửa đường tròn)

Xét BDK và BCD có \[\widehat {CBD}\] chung; \[\widehat {BKD} = \;\widehat {BDC}\,\,\left( { = \;90^\circ } \right)\]

Do đó  

Suy ra \(\frac{{BD}}{{BC}} = \frac{{BK}}{{BD}}\) hay \[B{D^2} = BK \cdot BC\].

Do  nên \[\widehat {BDH} = \;\widehat {BCD}\] (hai góc tương ứng).

Mà \[\widehat {BCD} = \widehat {BFD}\] (hai góc nội tiếp cùng chắn cung \[BD)\]

Nên \[\widehat {BDH} = \widehat {BFD}\] (đpcm)

Do \[\Delta AFB\] vuông tại \[F\] nên \[\widehat {ABF} = 90^\circ  - \widehat {BAF} = 90^\circ  - 60^\circ  = 30^\circ \].

Mà  nên \[\widehat {OEF} = 2 \cdot 30^\circ  = 60^\circ .\]

Xét \[\Delta OEF\] cân tại \[O\] (do \[OE = OF\]) có \[\widehat {EOF} = 60^\circ \] nên \[\Delta OEF\] là tam giác đều.

Suy ra \[EF = OE = OF = \frac{1}{2}BC = 3\,\,{\rm{cm}}{\rm{.}}\]

Xét \[\Delta ABC\] có đường cao \[CE\] và \[BF\] cắt nhau tại \[H\] nên \[H\] là trực tâm.

Suy ra \[AH \bot BC\]

Xét \[\Delta AHF\] và \[\widehat {BHK}\] có \[\widehat {AHF} = \;\widehat {BHK}\] (đối đỉnh) và \[\widehat {AFH} = \;\widehat {BKH}\,\,\left( { = \;90^\circ } \right)\]

Suy ra \[\widehat {HAF} = \widehat {HBK}\] hay \[\widehat {HAF} = \widehat {FBC}\]

Kết hợp \[\widehat {AFH} = \;\widehat {BFC}\,\,\left( { = \;90^\circ } \right)\] suy ra

Suy ra \(\frac{{AH}}{{BC}} = \frac{{AF}}{{BF}} = \cot \widehat {FAB} = \cot 60^\circ  = \frac{{\sqrt 3 }}{3}\) .

Suy ra \(AH = \frac{{\sqrt 3 }}{3} \cdot BC = \frac{{\sqrt 3 }}{3} \cdot 6 = 2\sqrt 3 .\)

Xét tứ giác \[AEHF\] nội tiếp đường tròn đường kính \[AH\] nên bán kính bằng \(\frac{{2\sqrt 3 }}{2} = \sqrt 3 .\)

Vậy \[EF = 3\,\,{\rm{cm}}\] và bán kính đường tròn ngoại tiếp tam giác \[AEF\] là \(\sqrt 3 .\)

 
 

Lời giải

1) Gọi \[a\] là số tấn hợp kim thép chứa \[10\% \] crom cần dùng \[\left( {a > 0} \right).\]

Khi đó, \[500--a\] là số tấn hợp kim thép 30% cần dùng.

Ta có \[a \cdot 10\%  + \left( {500--a} \right) \cdot 30\%  = 500 \cdot 16\% \]

\[10a + \left( {500--a} \right) \cdot 30 = 500 \cdot 16\]

\[a + 1\,\,500--3a = 800\]

\[2a = 700\]

\[a = 350\] (TMĐK)

Vậy số hợp kim thép chứa \[10\% \] crom cần dùng là 350 tấn, số hợp kim thép chứa \[30\% \] cần dùng là 150 tấn.

2)  Số crôm từ 100 tấn thép chứa \[10\% \] crôm là \[10\%  \cdot 100 = 10\] (tấn)

Số crôm từ x tấn thép chứa 30% crôm là \[0,3x\] (tấn)

Tổng số tấn thép là \[100 + x\] (tấn)

Phần trăm crôm có trong tổng số tấn thép nhà máy dự định luyện ra là: \(\frac{{10 + 0,3x}}{{100 + x}} \cdot 100\,\,\left( \%  \right)\)

Theo đầu bài, thép không gỉ Ferritic có chứa từ 12 đến 27 phần trăm crôm, ta có:

\(12 \le \frac{{10 + 0,3x}}{{100 + x}} \cdot 100 \le 27\)

\(1\,\,200 + 12x \le 1\,\,000 + 30x \le 2\,\,700 + 27x\)

 Xét \[1\,\,200 + 12x \le 1\,\,000 + 30x\]

\[30x - 12x \ge 1\,\,200 - 1\,\,000\]

\[18x \ge 200\]

\[x \ge \frac{{100}}{9} & \left( 1 \right)\]

 Xét \[1\,\,000 + 30x \le 2\,\,700 + 27x\]

\[30x - 27x \le 2\,\,700 - 1\,\,000\]

\[3x \le 1\,\,700\]

\[x \le \frac{{1\,\,700}}{3} & \left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[\frac{{100}}{9} \le x \le \frac{{1\,\,700}}{3}.\]

Vậy \[x\] nằm trong khoảng \[\frac{{100}}{9}\] đến \[\frac{{1\,\,700}}{3}.\]