Câu hỏi:
12/03/2025 1,587
Cho tam giác đều \[MNP\] nội tiếp đường tròn \(\left( O \right)\) như hình vẽ. Phép quay ngược chiều \(240^\circ \) tâm \[O\] biến các điểm \(N,\,\,M,\,\,P\) thành các điểm
![Cho tam giác đều \[MNP\] nội tiếp đường tròn \(\left( O \right)\) như hình vẽ. Phép quay ngược chiều \(240^\circ \) tâm \[O\] biến các điểm \(N,\,\,M,\,\,P\) thành các điểm (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/03/12-1741763486.png)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Các cung \(MN,\,\,NP,\,\,PM\) chia đường tròn \(\left( O \right)\) thành ba cung có số đo bằng nhau, suy ra mỗi cung có số đo bằng \[\frac{{360^\circ }}{3} = 120^\circ .\]
Phép quay ngược chiều \(240^\circ \) tâm \[O\] biến các điểm \(N,\,\,M,\,\,P\) thành các điểm \(M,\,\,P,\,\,N.\)CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Để đồ thị của hàm số \(y = \left( {m - 1} \right){x^2}\,\,\left( {m \ne 1} \right)\) đi qua điểm \(A\left( { - 1;2} \right)\) thì tọa độ điểm \(A\) thỏa mãn hàm số đó.
Thay \(x = - 1,\,\,y = 2\) vào hàm số \(y = \left( {m - 1} \right){x^2},\) ta được:
\(2 = \left( {m - 1} \right) \cdot {\left( { - 1} \right)^2}\) hay \(m - 1 = 2,\) nên \(m = 3\) (thỏa mãn).
Vậy \(m = 3.\)
Lời giải
Đáp án đúng là: B
Kí hiệu 4 học sinh nam lần lượt là X1, X2, X3, X4 và 2 học sinh nữ lần lượt là Y1, Y2.
Không gian mẫu của phép thử là:
\(\Omega = \){X1X2; X1X3; X1X4; X2X3; X2X4; X3X4; Y1Y2; X1Y1; X1Y2; X2Y1; X2Y2; X3Y1; X3Y2; X4Y1; X4Y2}.
Không gian mẫu có 15 phần tử.
Gọi A là biến cố: “Hai học sinh được chọn có ít nhất một học sinh nữ”.
Có 9 kết quả thuận lợi cho biến cố A là: Y1Y2; X1Y1; X1Y2; X2Y1; X2Y2; X3Y1; X3Y2; X4Y1; X4Y2.
Xác suất của biến cố A là: \(\frac{9}{{15}} = \frac{3}{5}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.