Câu hỏi:
12/03/2025 262Quảng cáo
Trả lời:
Vì \(MC,{\rm{ }}MD\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) nên \(OC \bot MC\,;\,\,OD \bot MD\).
Gọi \[O'\] là trung điểm của \[MO\] suy ra \(O'O = O'M = \frac{1}{2}MO & \left( 1 \right)\)
Xét tam giác \[OCM\] vuông tại \[C\] (cmt) có \(CO' = \frac{1}{2}MO\) (tính chất đường trung tuyến trong tam giác vuông) \[\left( 2 \right)\]
Xét tam giác \[OCM\] vuông tại \[C\] (cmt) có \(O'D = \frac{1}{2}OM\)(tính chất đường trung tuyến trong tam giác vuông) \[\left( 3 \right)\]
Từ \[\left( 1 \right),\,\,\left( 2 \right)\,,\,\,\left( 3 \right)\] suy ra \(O'O = O'M = O'D = O'C = \frac{1}{2}MO\).
Do đó bốn điểm \(M,\,\,C,\,\,O,\,\,D\) cùng thuộc một đường tròn đường tròn.
Câu hỏi cùng đoạn
Câu 2:
Lời giải của GV VietJack
Vì \(MC,{\rm{ }}MD\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) nên \(MC = MD\); \(MO\) là tia phân giác \(\widehat {CMD}.\)
Tam giác \(MCD\) cân tại \(M\) (vì \(MC = MD\)) có \(MO\) là tia phân giác \(\widehat {CMD}\) nên \(MO\) là đường cao của tam giác \(MCD\) hay \[OM \bot CD\].
Vì hai tiếp tuyến tại \(C\) và \(D\) cắt nhau tại \(M\) nên \[MO\] là phân giác của \(\widehat {MCD}\) \(\left( * \right)\)
Tam giác \[MOC\] vuông tại \[C\] (do \(MC\) là tiếp tuyến) nên \[\widehat {MCI} + \widehat {ICO} = 90^\circ & \left( 4 \right)\]
suy ra \[\widehat {ICD} + \widehat {CIO} = 90^\circ \,\,\,\left( 5 \right)\] mà \(\widehat {ICO} = \widehat {CIO}\) (do \(\Delta IOC\) cân)
Từ \(\left( 4 \right),\left( 5 \right),\left( 6 \right)\) suy ra \(\widehat {MCI} = \widehat {ICD}\) hay \[MI\] là phân giác của \(\widehat {CMD}\) \(\left( {**} \right)\)
Từ \(\left( * \right),\,\,\left( {**} \right)\) suy ra \(I\) là tâm đường tròn nội tiếp tam giác \[MCD\].
Câu 3:
Lời giải của GV VietJack
Ta có tam giác \[MPQ\] cân tại \[M,\] có \[MO\] là đường cao nên diện tích của nó được tính:
\(S = 2{S_{OQM}} = 2 \cdot \frac{1}{2} \cdot OD \cdot QM = R\left( {MD + DQ} \right)\).
Để diện tích tam giác \[MPQ\] nhỏ nhất hay \[S\] nhỏ nhất thì \[MD + DQ\] nhỏ nhất.
Mặt khác, ta chứng minh được trong tam giác vuông \[OMQ\] ta có \(DM \cdot DQ = O{D^2} = {R^2}\) không đổi nên \[MD + DQ\] nhỏ nhất hay \[DM = DQ = R\].
Khi đó \(OM = R\sqrt 2 \) hay \[M\] là giao điểm của \[d\] với đường tròn tâm \[O\] bán kính \(R\sqrt 2 \).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
1) a) Tìm \(a\) để đồ thị hàm số \(y = a{x^2}\) đi qua điểm \(M\left( {\sqrt 2 \,;{\rm{ }}2} \right).\)
b) Cho phương trình \[{x^2}\, - \,\left( {2m\, + \,1} \right)x\, + \,m\, = \,0\], \[m\] là tham số. Tìm các giá trị của \[m\] để phương trình có hai nghiệm \[{x_1}\,,\,{x_2}\] thoả mãn điều kiện \[\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \ge 19.\]
Câu 4:
Câu 5:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
123 bài tập Nón trụ cầu và hình khối có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận