Câu hỏi:
12/03/2025 390
(0,5 điểm) Hình bên minh họa bộ phận lọc của một bình lọc nước. Bộ phần này gồm một hình trụ và một nửa hình cầu với kích thước ghi trên hình. Hãy tính diện tích mặt ngoài của bộ phận này.

(0,5 điểm) Hình bên minh họa bộ phận lọc của một bình lọc nước. Bộ phần này gồm một hình trụ và một nửa hình cầu với kích thước ghi trên hình. Hãy tính diện tích mặt ngoài của bộ phận này.
Quảng cáo
Trả lời:
Diện tích xung quanh của hình trụ là \({S_1} = 2\pi Rh = 60\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)
Diện tích đáy của hình trụ là \({S_2} = \pi {R^2} = 25\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)
Diện tích nửa mặt cầu là \({S_3} = \frac{1}{2} \cdot 4\pi {R^2} = 50\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)
Vậy diện tích mặt ngoài của bộ phận lọc là \(S = {S_1} + {S_2} + {S_3} = 135\pi \,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right){\rm{.}}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì đồ thị hàm số đi qua điểm \(M\left( {\sqrt 2 \,;\,\,2} \right)\) nên thay \(x = \sqrt 2 \), \(y = 2\) vào hàm số \(y = a{x^2},\) ta được \(2 = a{\left( {\sqrt 2 } \right)^2}\) . Suy ra \(a = 1\).
Vậy \(a = 1\) thì đồ thị hàm số \(y = a{x^2}\) đi qua điểm \(M\left( {\sqrt 2 \,;{\rm{ }}2} \right)\).
b) Ta có \[\Delta \, = \,{\left[ { - \left( {2m\, + \,1} \right)} \right]^2}\, - \,4 \cdot 1\, \cdot \,m\]
\[ = \,\left( {4{m^2}\, + \,4m\, + \,1} \right)\, - \,4m\]\[ = \,\,4{m^2}\, + \,1 > 0\] với mọi \[m \in \mathbb{R}\]
Do đó, phương trình luôn có hai nghiệm phân biệt \({x_1},{x_2}\).
Theo định lí Viète, ta có: \[\left\{ \begin{array}{l}{x_1}\, + \,{x_2}\, = \,2m\, + \,1\\{x_1}{x_2}\, = \,m\end{array} \right.\].
Khi đó: \[\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \ge 19\] hay \({x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \ge 19\)
Suy ra \(m - \left( {2m + 1} \right) + 1 \ge 19\) hay \(m \le - 19\)
Vậy \(m \le - 19\) thoả mãn yêu cầu đề bài.
Lời giải
Đáp án đúng là: C
Thay \(x = - 1;\,\,y = 2\) vào hàm số \(y = - 2{x^2}\), ta được \( - 2 \cdot {\left( { - 1} \right)^2} - 2 \ne 2\) nên điểm \[\left( { - 1\,;\,\,2} \right)\] không thuộc đồ thị hàm số \(y = - 2{x^2}.\)
Thay \(x = 2\,;\,\,y = - 1\) vào hàm số \(y = - 2{x^2}\), ta được \( - 2 \cdot {2^2} = - 8 \ne - 1\) nên điểm \[\left( { - 1\,;\,\,2} \right)\] không thuộc đồ thị hàm số \(y = - 2{x^2}.\)
Thay \(x = - 1\,;\,\,y = - 2\) vào hàm số \(y = - 2{x^2}\), ta được \( - 2 \cdot {\left( { - 1} \right)^2} = - 2\) nên điểm \[\left( { - 1\,;\,\,2} \right)\] thuộc đồ thị hàm số \(y = - 2{x^2}.\)
Thay \(x = - 2\,;\,\,y = - 1\) vào hàm số \(y = - 2{x^2}\), ta được \[ - 2 \cdot {\left( { - 2} \right)^2} = - 8 \ne 2\] nên điểm \(\left( { - 2\,;\,\, - 1} \right).\) không thuộc đồ thị hàm số \(y = - 2{x^2}.\)
Vậy chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.