Quảng cáo
Trả lời:
\(A = \sqrt {16} + \sqrt[3]{{27}} = \sqrt {{4^2}} + \sqrt[3]{{{3^3}}} = 4 + 3 = 7.\)
\(B = \sqrt {{{\left( {3 + \sqrt 5 } \right)}^2}} = \left| {3 + \sqrt 5 } \right| = 3 + \sqrt 5 .\)
Câu hỏi cùng đoạn
Câu 2:
2) Rút gọn biểu thức: , với
Với \(x \ne - \sqrt 5 ,\) ta có:
\(P = \frac{{{x^2} - 5}}{{x + \sqrt 5 }} = \frac{{\left( {x + \sqrt 5 } \right)\left( {x - \sqrt 5 } \right)}}{{x + \sqrt 5 }} = x - \sqrt 5 .\)
Vậy với \(x \ne - \sqrt 5 \) thì \(P = x - \sqrt 5 .\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bảng tần số biểu diễn số lỗi chính tả của học sinh như sau:
|
Số lỗi chính tả |
0 |
1 |
2 |
3 |
4 |
5 |
|
Tần số |
4 |
10 |
7 |
5 |
8 |
6 |
Kích thước mẫu là: \(N = 40.\)
Vì tần số của giá trị 0 là 4 nên tần số tương đối của giá trị 0 là\(\frac{4}{{40}} \cdot 100\% = 10\% .\)
Vì tần số của giá trị 1 là 10 nên tần số tương đối của giá trị 1 là \(\frac{{10}}{{40}} \cdot 100\% = 25\% .\)
Tương tự, ta tính được tần số tương đối của các giá trị 2, 3, 4, 5 lần lượt là \(17,5\% ;\,\,12,5\% ;\,\,20\% ;\,\,15\% .\)
Ta thu được bảng tần số tương đối như sau:
|
Số lỗi chính tả |
0 |
1 |
2 |
3 |
4 |
5 |
|
Tần số tương đối |
\(10\% \) |
\(25\% \) |
\(17,5\% \) |
\(12,5\% \) |
\(20\% \) |
\(15\% \) |
Lời giải
\(\left( {2x + 3} \right)\left( {3x - 6} \right) = 0\)
\(2x + 3 = 0\) hoặc \(3x - 6 = 0\)
\(2x = - 3\) hoặc \(3x = 6\)
\(x = - \frac{3}{2}\) hoặc \(x = 2.\)
Vậy phương trình đã cho có nghiệm là \(x = - \frac{3}{2};\,\,x = 2.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
