Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước
115 người thi tuần này 4.6 393 lượt thi 14 câu hỏi 60 phút
🔥 Đề thi HOT:
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi minh họa (Dự thảo) TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đồng Nai
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước
Nội dung liên quan:
Danh sách câu hỏi:
Đoạn văn 1
Câu 1-2: (2,0 điểm)
Lời giải
\(A = \sqrt {16} + \sqrt[3]{{27}} = \sqrt {{4^2}} + \sqrt[3]{{{3^3}}} = 4 + 3 = 7.\)
\(B = \sqrt {{{\left( {3 + \sqrt 5 } \right)}^2}} = \left| {3 + \sqrt 5 } \right| = 3 + \sqrt 5 .\)
Lời giải
Với \(x \ne - \sqrt 5 ,\) ta có:
\(P = \frac{{{x^2} - 5}}{{x + \sqrt 5 }} = \frac{{\left( {x + \sqrt 5 } \right)\left( {x - \sqrt 5 } \right)}}{{x + \sqrt 5 }} = x - \sqrt 5 .\)
Vậy với \(x \ne - \sqrt 5 \) thì \(P = x - \sqrt 5 .\)
Đoạn văn 2
Câu 3-5: (2,0 điểm)
Lời giải
\(\left( {2x + 3} \right)\left( {3x - 6} \right) = 0\)
\(2x + 3 = 0\) hoặc \(3x - 6 = 0\)
\(2x = - 3\) hoặc \(3x = 6\)
\(x = - \frac{3}{2}\) hoặc \(x = 2.\)
Vậy phương trình đã cho có nghiệm là \(x = - \frac{3}{2};\,\,x = 2.\)
Lời giải
\(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}5x - 2y = 8\,\,\,\,\,\left( 1 \right)\\3x + 4y = 10\,\,\,\left( 2 \right)\end{array}\end{array}} \right.\)
Nhân hai vế của phương trình (1) với 2, ta được hệ phương trình mới \[\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}10x - 4y = 16\,\,\,\,\,\left( 3 \right)\\3x + 4y = 10\,\,\,\,\,\left( 2 \right)\end{array}\end{array}} \right.\]
Cộng từng vế của hai phương trình của hệ trên, ta được phương trình:
\(13x = 26,\) suy ra \(x = 2.\)
Thay \(x = 2\) vào phương trình (1), ta được: \(5 \cdot 2 - 2y = 8,\) suy ra \(y = 1.\)
Vậy hệ phương trình đã cho có nghiệm là \(\left( {2;\,\,1} \right).\)
Lời giải
Gọi chiều rộng mảnh vườn hình chữ nhật là \[x\] (m) \[\left( {x > 0} \right).\]
Chiều rộng ngắn hơn chiều dài 6 m nên chiều dài mảnh vườn là \(x + 20\) (m).
Diện tích mảnh vườn là: \(x\left( {x + 20} \right)\) (m2).
Theo bài, mảnh vườn có diện tích là \(1\,\,664\) m2 nên ta có phương trình:
\(x\left( {x + 20} \right) = 1\,\,664\)
\({x^2} + 20x - 1\,\,664 = 0.\)
Ta có \(\Delta ' = {10^2} - 1 \cdot \left( { - 1\,\,664} \right) = 1\,\,764 > 0\) và \(\sqrt {1\,\,764} = 42.\)
Do đó, phương trình có hai nghiệm phân biệt:
\[{x_1} = --10 + 42 = 32,{\rm{ }}{x_2} = --10--42 = --52.\]
Ta thấy chỉ có giá trị \[{x_1} = 32\] thỏa mãn điều kiện \[x > 0.\]
Vậy chiều rộng mảnh vườn là \(32\) m và chiều dài mảnh vườn là \[32 + 20 = 52\] (m).
Đoạn văn 3
Câu 6-7: (2,0 điểm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 4
Câu 8-9: (1,0 điểm) Sau bài thi môn Ngữ văn, cô giáo ghi lại số lỗi chính tả của 40 học sinh trong lớp 9A vào bảng thống kê sau:
\[\begin{array}{*{20}{l}}{\;2}&{\;5}&{\;2}&{\;2}&{\;1}&{\;3}&{\;4}&{\;0}&{\;5}&{\;2}&{\;5}&{\;1}&{\;2}&{\;1}&{\;3}&{\;5}&{\;1}&{\;0}&{\;4}&{\;1}\\{\;4}&{\;2}&{\;1}&{\;4}&{\;3}&{\;3}&{\;2}&{\;0}&{\;4}&{\;5}&{\;4}&{\;5}&{\;1}&{\;4}&{\;1}&{\;1}&{\;0}&{\;3}&{\;1}&{\;4}\end{array}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 5
Câu 10-11: (1,5 điểm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 6
Câu 12-14: (1,5 điểm) Cho tam giác nhọn \(ABC\) hai đường cao \(BE,\,\,CF\) cắt nhau tại \(H.\) Gọi \(M\) là trung điểm của \(BC,\,\,I\) là trung điểm của \(AH.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.