Câu hỏi:

19/03/2025 1,046

Đồ thị của hàm số nào trong các hàm số sau đây có tiệm cận xiên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Hàm số đa thức bậc hai và ba không có tiệm cận nên loại phương án A và B.

Hàm số \(y = \frac{{ax + b}}{{cx + d}}\) chỉ có tiệm cận đứng và ngang nên loại phương án C.

Ta có: \[y = \frac{{{x^2} - x + 1}}{{x - 1}} = x + \frac{1}{{x - 1}}\].

\[\mathop {\lim }\limits_{x \to + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{1}{{x - 1}}} \right) = 0,\,\,\mathop {\lim }\limits_{x \to - \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{1}{{x - 1}}} \right) = 0.\]

Vậy hàm số \[y = \frac{{{x^2} - x + 1}}{{x - 1}}\] có tiệm cận xiên y = x.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Ta có: \[y = \frac{{2{x^2} - 3x - 2}}{{{x^2} - 4}} = \frac{{(x - 2).\left( {2x + 1} \right)}}{{\left( {x - 2} \right).\left( {x + 2} \right)}}\] \[ = \frac{{2x + 1}}{{x + 2}}\]

Do \[\mathop {\lim }\limits_{x \to \pm \infty } \frac{{2{x^2} - 3x - 2}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{(x - 2).\left( {2x + 1} \right)}}{{\left( {x - 2} \right).\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{2x + 1}}{{x + 2}} = 2\] nên tiệm cận ngang của đồ thi hàm số là đường thẳng y = 2.

Do \[\mathop {\lim }\limits_{x \to - {2^ + }} \frac{{2{x^2} - 3x - 2}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{(x - 2).\left( {2x + 1} \right)}}{{\left( {x - 2} \right).\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{2x + 1}}{{x + 2}} = - \infty \] và

\[\mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2{x^2} - 3x - 2}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{(x - 2).\left( {2x + 1} \right)}}{{\left( {x - 2} \right).\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2x + 1}}{{x + 2}} = - \infty \] nên tiệm cận đứng của đồ thị hàm số là đường thẳng x = −2. Vậy đồ thị hàm số có hai tiệm cận.

Lời giải

Đáp án đúng là: D

Ta có: \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}} = x + 1 + \frac{1}{{x + 1}}\).

Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{x + 1}} = 0\).

Vậy tiệm cận xiên là: y = x + 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP