Câu hỏi:
20/03/2025 201Quảng cáo
Trả lời:
Hướng dẫn giải:
1) Tập xác định: ℝ.
2) Sự biến thiên
Ta có y' = 3x2 – 6x; y' = 0 3x2 – 6x = 0 x = 0 hoặc x = 2.
Hàm số đồng biến trên mỗi khoảng (−∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).
Hàm số đạt cực đại tại x = 0; yCĐ = 4 ; hàm số đạt cực tiểu tại x = 2; yCT = 0.
Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ,\mathop {\lim }\limits_{x \to - \infty } y = - \infty \).
Bảng biến thiên:
3) Đồ thị
- Giao điểm của đồ thị với trục tung: (0; 4).
- Giao điểm của đồ thị với trục hoành:
Xét phương trình x3 – 3x2 + 4 = 0 x = −1 hoặc x = 2.
Vậy đồ thị hàm số giao với trục hoành tại hai điểm (−1; 0) và (2; 0).
- Đồ thị hàm số đi qua các điểm (−1; 0), (2; 0), (0; 4) và (1; 2).
Vậy đồ thị hàm số y = x3 – 3x2 + 4 được cho ở Hình.
Quan sát đồ thị ở Hình, ta thấy đồ thị đó có tâm đối xứng là điểm I(1; 2).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có tiệm cận đứng và tiệm cận xiên là đường thẳng x = 1, y = x + 3 do đó tâm đối xứng là I(1; 4).
Lời giải
Đáp án đúng là: C
Gọi M(x0; y0) là giao điểm của đồ thị hàm số với trục tung.
Ta có x0 = 0 y0 = 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.