Câu hỏi:
19/03/2025 267Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 3x + 1}}{{x + 1}}\) có đồ thị (C). Chọn đáp án đúng.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Điều kiện: x + 1 ≠ 0 x ≠ −1.
Vậy tập xác định của hàm số f(x) là D = ℝ\{−1}.
Ta có: \(f'\left( x \right) = \frac{{{x^2} + 2x + 2}}{{{{\left( {x + 1} \right)}^2}}} > 0,\,\forall x \in D\).
Vậy hàm số f(x) luôn đồng biến trên từng khoảng xác định của nó.
Ta có: \(f\left( x \right) = \frac{{{x^2} + 3x + 1}}{{x + 1}} = x + 2 - \frac{1}{{x + 1}}\)
Và: \[\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - \left( {x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 1}}{{x + 1}} = 0\].
Suy ra: đường thẳng y = x + 2 là đường tiệm cận xiên của (C).
Đồ thị hàm số nhận x = −1 là tiệm cận đứng.
Do đó điểm I(−1; 1) là tâm đối xứng của đồ thị hàm số đã cho.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có tiệm cận đứng và tiệm cận xiên là đường thẳng x = 1, y = x + 3 do đó tâm đối xứng là I(1; 4).
Lời giải
Đáp án đúng là: C
Gọi M(x0; y0) là giao điểm của đồ thị hàm số với trục tung.
Ta có x0 = 0 y0 = 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.