Câu hỏi:
13/04/2025 122
Galilei là người phát hiện ra quãng đường chuyển động của vật rơi tự do tỉ lệ thuận với bình phương của thời gian. Quan hệ giữa quãng đường chuyển động y (mét) và thời gian chuyển động \(x\) (giây) được biểu diễn gần đúng bởi công thức \({\rm{y}} = 5{{\rm{x}}^2}\). Người ta thả một vật nặng từ độ cao 55 m trên tháp nghiêng Pisa xuống đất (sức cản của không khí không đáng kể)
a) Hãy cho biết sau 3 giây thì vật nặng còn cách mặt đất bao nhiêu mét?
b) Khi vật nặng còn cách đất 25 m thì nó đã rơi được thời gian bao lâu?
Galilei là người phát hiện ra quãng đường chuyển động của vật rơi tự do tỉ lệ thuận với bình phương của thời gian. Quan hệ giữa quãng đường chuyển động y (mét) và thời gian chuyển động \(x\) (giây) được biểu diễn gần đúng bởi công thức \({\rm{y}} = 5{{\rm{x}}^2}\). Người ta thả một vật nặng từ độ cao 55 m trên tháp nghiêng Pisa xuống đất (sức cản của không khí không đáng kể)
a) Hãy cho biết sau 3 giây thì vật nặng còn cách mặt đất bao nhiêu mét?
b) Khi vật nặng còn cách đất 25 m thì nó đã rơi được thời gian bao lâu?
Câu hỏi trong đề: 33 bài tập Căn thức có lời giải !!
Quảng cáo
Trả lời:
Thay \(x = 3\) vào công thức \(y = 5{x^2}\), ta được: \(y = {5.3^2} = 45\;{\rm{m}}\)
Vậy sau 3 giây thì vật nặng còn cách mặt đất là: \(55 - 45 = 10\;{\rm{m}}\)
Quãng đường chuyển động của vật nặng còn cách đất 25 m là: \(55 - 25 = 30\;{\rm{m}}\)
Thay \(y = 30\) vào công thức \(y = 5{x^2}\), ta được: \(30 = 5{x^2} \Rightarrow {x^2} = 6 \Rightarrow x = \sqrt 6 \approx 2,4\) (giây)
Vậy thời gian vật nặng rơi được là 2,4 giây.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vậy chu kỳ đong đưa dài 3,88 giây.
b) Thay \({\rm{T}} = 4;{\rm{g}} = 9,81\) vào công thức \({\rm{T}} = 2\pi \sqrt {\frac{{\rm{L}}}{{\rm{g}}}} \), ta được:
\(4 = 2\pi \cdot \sqrt {\frac{{\rm{L}}}{{9,81}}} \Rightarrow \sqrt {\frac{{\rm{L}}}{{9,81}}} = \frac{2}{\pi } \Rightarrow \frac{{\rm{L}}}{{9,81}} = {\left( {\frac{2}{\pi }} \right)^2} \Rightarrow {\rm{L}} = 9,81.{\left( {\frac{2}{\pi }} \right)^2} \approx 4\;{\rm{m}}\)
Vậy phải làm một dây đu dài 4 m.
Lời giải
a) Thay \({{\rm{P}}_t} = 91703,8;{{\rm{P}}_0} = 90728,9\) vào công thức \(\overline {\rm{r}} = \sqrt {\frac{{{{\rm{P}}_{\rm{t}}}}}{{{{\rm{P}}_0}}}} - 1\), ta được:\(\bar r = \sqrt {\frac{{91703,8}}{{90728,9}}} - 1 = 0,0054 = 0,54\% \)
Vậy tốc độ tăng trương dân số bình quân hàng năm trong giai đoạn trên của Việt Nam là \(0,54\% \).
b) Thay \(r = 0,0054;{P_0} = 91703,8\) vào công thức \(\bar r = \sqrt {\frac{{{P_t}}}{{{P_0}}}} - 1\), ta được:
\(0,054 = \sqrt {\frac{{{{\rm{P}}_{\rm{t}}}}}{{91703,8}}} - 1 \Rightarrow \sqrt {\frac{{{{\rm{P}}_{\rm{t}}}}}{{91703,8}}} = 1,0054 \Rightarrow \frac{{{{\rm{P}}_{\rm{t}}}}}{{91703,8}} = {(1,0054)^2}\)
\( \Rightarrow {{\rm{P}}_{\rm{t}}} = {(1,0054)^2} \cdot 91703,8 \approx 92199,00052\)
Vậy ước tính số dân Việt Nam vào năm 2016 là 92199,00052 ngàn người.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.