Câu hỏi:

13/04/2025 1,291 Lưu

Từ máy bay trực thăng ở độ cao \(AB\) khoảng 700 m so với mặt đất, người ta nhìn thấy hai điểm \(M,N\) của hai cây cầu với góc hạ lần lượt là góc \(xBM\) bằng 50° và góc \(xBN\) bằng 30°. Em hãy tính chiều dài của cây cầu (kết quả làm tròn đến mét).
Em hãy tính chiều dài của cây cầu (kết quả làm tròn đến mét). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Vì Bx//ANBNA=xBN=30°;BMA=xBM=50°
Xét BAM vuông tại \(A\), ta có: tanBMA=ABAMtan50°=700AMAM=700tan50°=587 m
Xét BAN vuông tại \(A\), ta có: tanBNA=ABANtan30°=700ANAN=700tan30°=1212 m
Ta có: MN=ANAM=1212587=625 m
Vậy chiều dài của cây cầu là 625 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tứ giác \(ABDE\) là hình chữ nhật nên \(AB = DE = 250\;{\rm{m}}\).
Xét ABC vuông tại \(A\), ta có:
tanABC=ACABtan38°=AC250AC=250tan38°195 m
Ta có \(:{\rm{CE}} = {\rm{CA}} + {\rm{AE}} = 195 + 1,5 = 196,5\;{\rm{m}}\).
Vậy độ cao của khinh khí cầu so với mặt đất là 196,5m.