Câu hỏi:

13/04/2025 967 Lưu

Một cây quạt giấy có bán kính 25 cm , biết AOB^=130° (hình vẽ bên).
a) Em hãy tính diện tích hình quạt AOB được tạo bởi cây quạt giấy? (kết quả làm tròn đến hàng đơn vị).
b) Tính diện tích giấy để làm 100 cây quạt. Biết quạt dán 2 mặt và phần mép dán không đáng kể.
Em hãy tính diện tích hình quạt AOB được tạo bởi cây quạt giấy? (kết quả làm tròn đến hàng đơn vị). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Diện tích hình quạt là: \({\rm{S}} = \frac{{\pi {{\rm{R}}^2}{\rm{n}}}}{{360}} = \frac{{\pi \cdot {{25}^2} \cdot 130}}{{360}} \approx 709\left( {\;{\rm{c}}{{\rm{m}}^2}} \right)\).

b) Diện tích giấy làm 100 cây quạt là: \(709 \cdot 2 \cdot 100 = 141800\left( {\;{\rm{c}}{{\rm{m}}^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn hãy tính bán kính và chu vi của đường tròn (ảnh 2)

Gọi \[O\] là tâm đường tròn nội tiếp \[\Delta ABC\].
\[O\] là giao điểm 3 đường phân giác.
Mà \[\Delta ABC\] đều nên \[AH\]là đường phân giác cũng là đường cao, đường trung tuyến.
\[O\] là trọng tâm \[\Delta ABC\] và \[AH = 3.OH = 3.R\].
và \[\widehat {HAC} = \frac{{\widehat {BAC}}}{2} = {30^0};\,\,BC = 2.HC\]
Xét \[\Delta HAC\]vuông tại \[H\].
\[ \Rightarrow HC = AH.\tan 30^\circ = 3R.\frac{{\sqrt 3 }}{3} = R.\sqrt 3 \]
\[{S_{ABC}} = \frac{1}{2}AH.BC = AH.HC = 3R.R\sqrt 3 {\rm{ = 3}}\sqrt 3 {R^2}\]
\[ \Rightarrow 1\,200\,\, = \,\,3\sqrt 3 .{R^2}\,\]
\[ \Leftrightarrow R{\rm{ = }}\sqrt {\frac{{1200}}{{3\sqrt 3 }}} \,\, \approx 15,2\,\,\,\,\,\left( {\rm{m}} \right)\]
Chu vi đường tròn (O) là \[2.3,14.15,2 \approx 95,5\](m)
Vậy bán kính \[\left( O \right)\]là \[15,2\]m; chu vi là \[95,5\]m.

Lời giải

Số vòng quay của bánh xe trong 1 giây là \(60:20 = 3\) (vòng).
Số vòng quay của bánh xe trong 3 phút là \(3.60.3 = 540\) (vòng).
Chu vi bánh xe là \(2\pi \cdot 6,5 = 13\pi ({\rm{cm}})\).
Quãng đường bánh xe đi được là \(540.13\pi \approx 22054(\;{\rm{cm}})\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP