Một sân vận động có hình dạng và kích thước được mô phỏng như hình vẽ. Biết . Hãy tính chu vi của sân vận động trên? (Làm tròn đến hàng phần trăm).

Một sân vận động có hình dạng và kích thước được mô phỏng như hình vẽ. Biết . Hãy tính chu vi của sân vận động trên? (Làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:

Kẻ \({\rm{OH}} \bot {\rm{AB}}\) tại \(H\), ta có:
Xét vuông tại \(H\), ta có:
Độ dài cung AB là:
Vậy chu vi sân khoảng 394,3 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[O\] là giao điểm 3 đường phân giác.
Mà \[\Delta ABC\] đều nên \[AH\]là đường phân giác cũng là đường cao, đường trung tuyến.
\[O\] là trọng tâm \[\Delta ABC\] và \[AH = 3.OH = 3.R\].
và \[\widehat {HAC} = \frac{{\widehat {BAC}}}{2} = {30^0};\,\,BC = 2.HC\]
Xét \[\Delta HAC\]vuông tại \[H\].
\[ \Rightarrow HC = AH.\tan 30^\circ = 3R.\frac{{\sqrt 3 }}{3} = R.\sqrt 3 \]
\[{S_{ABC}} = \frac{1}{2}AH.BC = AH.HC = 3R.R\sqrt 3 {\rm{ = 3}}\sqrt 3 {R^2}\]
\[ \Rightarrow 1\,200\,\, = \,\,3\sqrt 3 .{R^2}\,\]
\[ \Leftrightarrow R{\rm{ = }}\sqrt {\frac{{1200}}{{3\sqrt 3 }}} \,\, \approx 15,2\,\,\,\,\,\left( {\rm{m}} \right)\]
Chu vi đường tròn (O) là \[2.3,14.15,2 \approx 95,5\](m)
Vậy bán kính \[\left( O \right)\]là \[15,2\]m; chu vi là \[95,5\]m.
Lời giải
Số vòng quay của bánh xe trong 3 phút là \(3.60.3 = 540\) (vòng).
Chu vi bánh xe là \(2\pi \cdot 6,5 = 13\pi ({\rm{cm}})\).
Quãng đường bánh xe đi được là \(540.13\pi \approx 22054(\;{\rm{cm}})\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.