Một xe đạp dự định đi từ \(A\) đến \(B\) trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn \(10km\) thì đến nơi sớm hơn dự định \(1\) giờ, còn nếu xe chạy chậm lại mỗi giờ \(5km\) thì đến nơi chậm mất \(2\) giờ. Tính vận tốc của xe lúc ban đầu.
Quảng cáo
Trả lời:

Gọi vận tốc lúc đầu của xe \[x{\mkern 1mu} {\mkern 1mu} ({\rm{km}}/{\rm{h}};x > 10)\], thời gian theo dự định là \[y{\mkern 1mu} (y > 3)\](giờ)
Nếu xe chạy mỗi giờ nhanh hơn \[10{\mkern 1mu} km\] thì đến nơi sớm hơn dự định \[10{\mkern 1mu} km\] giờ nên ta có
phương trình \[(x + 10)(y - 1) = xy\]
Nếu xe chạy chậm lại mỗi giờ \[5{\mkern 1mu} km\] thì đến nơi chậm mất \(2\) giờ nên ta có phương trình
\[(x - 5)(y + 2) = xy\]
Suy ra hệ phương trình \[\left\{ \begin{array}{l}(x + 10)(y - 1) = xy\\(x - 5)(y + 2) = xy\end{array} \right.\]
\[\left\{ \begin{array}{l} - x + 10y = 10\\2x - 5y = 10\end{array} \right.\]
\[\left\{ \begin{array}{l}x = 10\\y = 2\end{array} \right.\] (Thỏa mãn). Vậy vận tốc ban đầu là \[10{\mkern 1mu} {\rm{km}}/{\rm{h}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi thời gian \[A,B\] làm một mình xong công việc lần lượt là \(x,y\)(\[y > x > 6\] đơn vị : ngày).
Mỗi ngày các bạn \[A,B\] lần lượt làm được \[\frac{1}{x}\] và \[\frac{1}{y}\] (công việc ).
Vì hai bạn \(A\) và \(B\) cùng làm chung một công việc thì hoàn thành sau \[6\] ngày nên ta có :
\[\frac{1}{x} + \frac{1}{y} = \frac{1}{6}\] (1).
Do làm một mình xong công việc thì \[B\] làm lâu hơn \[A\] là \[9\] ngày nên ta có phương trình :
\[y - x = 9\] (2).
Từ (1) và (2) ta có hệ phương trình: \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{6}\\y - x = 9\end{array} \right.\]. Giải hệ ta được
\[\left\{ \begin{array}{l}x = 9\\y = 18\end{array} \right.\] (thỏa mãn). Vậy \[B\] hoàn thành cả công việc trong \[18\] ngày.
Suy ra sau khi \[A\] làm một mình xong nửa công việc rồi nghỉ, \(B\) hoàn thành công việc còn lại trong \[9\]ngày.
Câu 2
Lời giải
Gọi vận tốc thực của canô là \[x{\mkern 1mu} {\mkern 1mu} ({\rm{km}}/{\rm{h}},x > 0)\], vận tốc dòng nước là \[y{\mkern 1mu} {\mkern 1mu} ({\rm{km}}/{\rm{h}},0 < y < x)\]
Vận tốc cano khi xuôi dòng là \[x + y{\mkern 1mu} {\mkern 1mu} ({\rm{km}}/{\rm{h}})\], vận tốc cano khi ngược dòng là \[x - y{\mkern 1mu} {\mkern 1mu} ({\rm{km}}/{\rm{h}})\]
Canô đi xuôi dòng theo một khúc sông trong 3 giờ và đi ngược dòng trong 4 giờ, được \[380{\mkern 1mu} km\] nên ta có phương trình : \[3(x + y) + 4(x - y) = 380\]
Canô xuôi dòng trong 1 giờ và ngược dòng trong vòng 30 phút được \[85{\mkern 1mu} km\] nên ta có phương trình \[x + y + \frac{1}{2}(x - y) = 85\]
Ta có hệ phương trình \[\left\{ \begin{array}{l}3(x + y) + 4(x - y) = 380\\x + y + \frac{1}{2}(x - y) = 85\end{array} \right.\]
\[\left\{ \begin{array}{l}7x - y = 380\\3x + y = 170\end{array} \right.\]
\[\left\{ \begin{array}{l}10x = 550\\3x + y = 170\end{array} \right.\]
\[\left\{ \begin{array}{l}x = 55\\y = 5\end{array} \right.\] (thỏa mãn). Vậy vận tốc dòng nước là \[5km/h\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.