Cho các bất phương trình sau, đâu là bất phương trình bậc nhất một ẩn.
Cho các bất phương trình sau, đâu là bất phương trình bậc nhất một ẩn.
Quảng cáo
Trả lời:

Dựa vào định nghĩa bất phương trình bậc nhất một ẩn ta có :
Đáp án A là bất phương trình bậc nhất một ẩn.
Đáp án B không phải bất phương trình bậc nhất một ẩn vì \[a = 0\].
Đáp án C không phải là bất phương trình bậc nhất vì có \[{x^2}\].
Đáp án D không phải bất phương trình vì đây là phương trình bậc nhất một ẩn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Xét hiệu:
\[3\left( {{a^2} + {b^2} + {c^2}} \right) - {\left( {a + b + c} \right)^2}\]
\[ = 3{a^2} + 3{b^2} + 3{c^2} - {a^2} - {b^2} - {c^2} - 2ab - 2bc - 2ac\]
\[ = 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ac\]
\[ = {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \ge 0\]
(vì \[{\left( {a - b} \right)^2} \ge 0\];\[{\left( {b - c} \right)^2} \ge 0\]; \[{\left( {c - a} \right)^2} \ge 0\] với mọi \[a\], \[b\], \[c\])
Nên \[3\left( {{a^2} + {b^2} + {c^2}} \right) \ge {\left( {a + b + c} \right)^2}\].
Dấu xảy ra khi \[a = b = c\].
Câu 2
Lời giải
Theo đề bài ta có:
\(\left( 1 \right)\): \[\left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) \ge 4\]\[ \Leftrightarrow 1 + \frac{x}{y} + \frac{y}{x} + 1 \ge 4\]\[ \Leftrightarrow \frac{{{x^2} + {y^2}}}{{xy}} \ge 2\]
\[ \Leftrightarrow {x^2} + {y^2} \ge 2xy\] (do \(x > 0,y > 0 \Rightarrow xy > 0\)).
\[ \Leftrightarrow {x^2} + {y^2} - 2xy \ge 0\]\[ \Leftrightarrow {\left( {x - y} \right)^2} \ge 0\] với mọi\[x\], \[y\]
Nên khẳng định \(\left( 1 \right)\) đúng
\(\left( 2 \right)\): \({x^2} + {y^3} \le 0\)
Với \(\left\{ \begin{array}{l}x > 0\\y > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x^2} > 0\\{y^3} > 0\end{array} \right. \Rightarrow {x^2} + {y^3} > 0\)
⇒ Khẳng định \(\left( 2 \right)\) sai.
Khẳng định \(\left( 1 \right)\) đúng ⇒ Khẳng định \(\left( 3 \right)\) sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.