Câu hỏi:

15/04/2025 154 Lưu

Một người đứng cách chân tháp \[13,65{\rm{ m}}\] nhìn lên đỉnh tháp với phương nhìn hợp với phương nằm ngang một góc bằng \[{\rm{58}}^\circ \]. Biết mắt của người đó cách chân của mình một khoảng \[1,55{\rm{ m}}\], hỏi tháp cao bao nhiêu mét? (làm tròn đến chữ số thập phân thứ hai) 
R (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

+ Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ
Gọi \[N\] là hình chiếu của \[M\] lên đoạn \[AH\].
Vì \[MN\] và \[BH\] là các đoạn thẳng nằm trên phương ngang; \[MB\] và \[NH\] nằm trên phương thẳng đứng nên tứ giác \[MBHN\] là hình chữ nhật.
Suy ra: \[NH = MB = 1,55\,\,{\rm{m}}\]; \[MN = BH = 13,65\,\,{\rm{m}}\].
+ Tam giác \[ANM\] vuông tại \[N\] nên \[AN = MN.\tan M\]
(áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác vuông)
Ta có: \[AH = AN + NH\]
\[ \Rightarrow AH = MN.\tan M + NH\]
\[ \Rightarrow AH = 13,65.\tan 58^\circ + 1,55 \approx 23,39\,\,\left( {\rm{m}} \right)\]
Vậy chiều cao của tháp là \[23,39\,\,{\rm{m}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D
Do Mặt đất là phương ngang nên \[\widehat {BCA} = 30^\circ \] và \[\widehat {BDA} = 60^\circ \].
Gọi \[x\](m/phút) là vận tốc xe máy, điều kiện \[x > 0\].
Vì xe máy đi từ \[C\] đến \[D\] trong \[6\] phút nên \[CD = 6x\,\,\left( {\rm{m}} \right)\]
Xét \[\Delta ABC\] vuông tại \[A\], áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác ta có:
\[AC = AB.\,\cot \widehat {BCA} = AB.\,\cot {30^{\rm{o}}} = AB.\tan {60^{\rm{o}}} = \sqrt 3 AB\] (do \[\cot {30^{\rm{o}}} = \tan {60^{\rm{o}}}\]) \[\left( 1 \right)\]
Xét \[\Delta ABD\] vuông tại \[A\], áp dụng hệ thức giữa cạnh và góc nhọn trong tam giác ta có:
\[AD = AB.\,\cot \widehat {BDA} = AB.\,\cot {60^{\rm{o}}} = AB.\tan {30^{\rm{o}}} = \frac{{\sqrt 3 AB}}{3}\] (do \[\cot {60^{\rm{o}}} = \tan {30^{\rm{o}}}\]) \[\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[AC - AD = AB\left( {\sqrt 3 - \frac{{\sqrt 3 }}{3}} \right) \Rightarrow CD = \frac{{2\sqrt 3 }}{3}AB\].
Xét tỉ số \[\frac{{AD}}{{CD}} = \frac{{\sqrt 3 AB}}{3}:\frac{{2\sqrt 3 }}{3}AB = \frac{1}{2} \Rightarrow AD = \frac{1}{2}CD = \frac{1}{2}.6x = 3x\,\,\left( {\rm{m}} \right)\]
Vậy thời gian để xe máy chạy từ \[D\] đến tòa nhà là \[\frac{{3x}}{x} = 3\] (phút).

Câu 2

Lời giải

Chọn A
Xét \[\Delta ABC\] vuông tại \[B\]
Áp dụng tỉ số lượng giác trong tam giác trong tam giác vuông ABC ta có
\[\tan C = \frac{{AB}}{{CB}}\], suy ra \[AB = BC \cdot \tan C\] hay \[AB = 5,8 \cdot \tan 60^\circ = 5,8 \cdot \sqrt 3 \approx 10,05\] (m)
Vậy chiều cao của tháp canh gần bằng \[10,05\] mét.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP