Câu hỏi:
24/05/2025 124
Cho hai mặt phẳng \(\left( \alpha \right):3x - 2y + 2z + 7 = 0\) và \(\left( \beta \right):5x - 4y + 3z + 1 = 0\). Phương trình mặt phẳng \(\left( P \right)\) đi qua gốc tọa độ đồng thời vuông góc \(\left( \alpha \right)\) và \(\left( \beta \right)\) là:
Quảng cáo
Trả lời:
Mặt phẳng \(\left( \alpha \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {3\,;\, - 2\,;2} \right)\).
Mặt phẳng \(\left( \beta \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {5\,;\, - 4\,;3} \right)\).
Giả sử mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến là \(\overrightarrow n \).
Do mặt phẳng \(\left( P \right)\) vuông góc với cả \(\left( \alpha \right)\) và \(\left( \beta \right)\) nên ta có \(\left\{ \begin{array}{l}\overrightarrow n \bot \overrightarrow {{n_1}} \\\overrightarrow n \bot \overrightarrow {{n_2}} \end{array} \right.\)\( \Rightarrow \overrightarrow n = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = \left( {2\,;1\,;\, - 2} \right)\).
Mặt phẳng \(\left( P \right)\) đi qua \(O\left( {0\,;\,0\,;\,0} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {2\,;1\,;\, - 2} \right)\) có phương trình là: \(2x + y - 2z = 0\). Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(t\) là thời gian tính từ lúc xe Taxi bắt đầu chuyển động (\(t \ge 0\), đơn vị giây).
Vận tốc của xe Taxi: \({v_T}\left( t \right) = - \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t\) (m/s).
Xe Cứu thương xuất phát sau 1 giây (\(t = 1\)) với gia tốc \(a\) và vận tốc ban đầu \(0\).
Gọi \(t' = t - 1\) là thời gian chuyển động của xe Cứu thương (\(t' \ge 0\)).
Vận tốc xe Cứu thương: \({v_A}\left( {t'} \right) = at'\).
Quãng đường xe Cứu thương: \({S_A}\left( {t'} \right) = \frac{1}{2}a{\left( {t'} \right)^2}\).
a) Sai. Quãng đường xe Taxi đi được đến khi nhập làn (\(t = 20\)\[{\rm{s}}\]):
\({S_T}\left( {20} \right) = \int\limits_0^{20} {{v_T}\left( t \right)\,{\rm{d}}t} = \int\limits_0^{20} {\left( { - \frac{1}{{180}}{t^2} + \frac{{116}}{{135}}t} \right){\rm{d}}t} \) \[ = \left. {\left( { - \frac{{{t^3}}}{{540}} + \frac{{58}}{{135}}{t^2}} \right)} \right|_0^{20} = - \frac{{{{20}^3}}}{{540}} + \frac{{58}}{{135}} \cdot {20^2} = \frac{{4240}}{{27}} \approx 157\,{\rm{(m)}}\].
Lời giải
Đáp án: 3390.
Chọn hệ trục tọa độ \(Oxy\) sao cho parabol \(f\left( x \right) = a{x^2} + bx + c\) cắt trục hoành tại các điểm \(\left( { - 4;0} \right)\), \(\left( {24;0} \right)\) và tọa độ đỉnh \(I\left( {10; - \frac{{17}}{2}} \right)\).
Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}\begin{array}{l}16a - 4b + c = 0\\576a + 24b + c = 0\,\,\,\,\,\,\end{array}\\{100a + 10b + c = - \frac{{17}}{2}}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{17}}{{392}}\\b = - \frac{{85}}{{98}}\\c = - \frac{{204}}{{49}}\end{array} \right.\).
Nên \(f\left( x \right) = \frac{{17}}{{392}}{x^2} - \frac{{85}}{{98}}x - \frac{{204}}{{49}}\).
Thể tích của quả bóng bầu dục là:
\(V = \pi \int\limits_{ - 4}^{24} {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x = \pi } \int\limits_{ - 4}^{24} {{{\left[ {\frac{{17}}{{392}}{x^2} - \frac{{85}}{{98}}x - \frac{{204}}{{49}}} \right]}^2}{\rm{d}}x = } \frac{{16184\pi }}{{15}}\)\( \approx 3390\) (\({\rm{c}}{{\rm{m}}^{\rm{3}}}\)).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.