Câu hỏi:

26/05/2025 62

Cho phương trình 5x2 – x – 1 = x2 – 4. Khẳng định nào sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Phương trình:

5x2 – x – 1 = x2 – 4

5x2 – x – 1 – x2 + 4 = 0

4x2 – x + 3 = 0.

Như vậy, phương trình đã cho đưa được về dạng phương trình bậc hai một ẩn ax2 + bx + c = 0 (a ≠ 0) với a = 4, b = –1, c = 3.

Khi đó, ta có ∆ = (–1)2 – 4.4.3 = –47 < 0, nên phương trình đã cho vô nghiệm.

Vậy phương án C là khẳng định sai, ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

Phương trình x2 – x + 5 = 0 có ∆ = (–1)2 – 4.1.5 = –19 < 0 nên phương trình này vô nghiệm.

Phương trình x2 – 6x + 25 = 0 có ∆' = (–3)2 – 1.25 = –16 < 0 nên phương trình này vô nghiệm.

Phương trình –x2 – 6x – 9 = 0 có ∆' = (–3)2 – (–1).(–9) = 0 nên phương trình này có nghiệm kép.

Phương trình x2 – 9x – 11 = 0 có ∆ = (–9)2 – 4.1.(–11) = 125 > 0 nên phương trình này có hai nghiệm phân biệt.

Vậy ta chọn phương án D.

Lời giải

Đáp án đúng là: C

Xét phương trình: 2mx2 – 4(m – 1)x + 1 = 0. (1)

⦁ Nếu m = 0 thì phương trình (1) trở thành:

4x + 1 = 0, suy ra \(x = - \frac{1}{4}.\)

Như vậy, với m = 0 thì phương trình có nghiệm duy nhất \(x = - \frac{1}{4}.\) Trường hợp này thỏa mãn yêu cầu đề bài.

⦁ Nếu m ≠ 0 thì phương trình (1) là phương trình bậc hai một ẩn, có:

∆' = [–2(m – 1)]2 – 2m.1 = 4m2 – 8m + 4 – 2m = 4m2 – 10m + 4.

Trong trường hợp này, để phương trình (1) có một giá trị nghiệm thì ∆' = 0, tức là 4m2 – 10m + 4 = 0 hay 2m2 – 5m + 2 = 0.

Giải phương trình:

2m2 – 5m + 2 = 0

2m2 – 4m – m + 2 = 0

2m(m – 2) – (m – 2) = 0

(m – 2)(2m – 1) = 0

m – 2 = 0 hoặc 2m – 1 = 0

m = 2 (thỏa mãn m ≠ 0) hoặc \(m = \frac{1}{2}\) (thỏa mãn m ≠ 0).

Kết hợp 2 trường hợp, ta có \(m \in \left\{ {0;\,\,2;\,\,\frac{1}{2}} \right\}.\)

Mà m là số nguyên nên m ∈ {0; 2}.

Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu đề bài, ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP