Câu hỏi:

27/05/2025 42

Cho hình vuông ABCD, M là điểm tùy ý thuộc cạnh CD. Hai đường tròn đường kính CD và AM cắt nhau tại N (khác D). Gọi K là giao điểm của DN và BC. Khi đó,

(I). I, N, C thẳng hàng .

(II). ∆CDK = ∆MIC.

(III). AC ⊥ KM.

Số phát biểu đúng là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Gọi I là giao điểm của đường tròn (O) đường kính AM và CD.

Do đó, \[\widehat {AIM} = 90^\circ \].

Tứ giác DAIM là hình chữ nhật

(vì \[\widehat {AIM} = \widehat {IAD} = \widehat {ADM} = 90^\circ \])

Do đó, \[\widehat {IMD} = 90^\circ \] nên DI là đường kính của (O).

Suy ra \[\widehat {DNC} = 90^\circ \].

Ta có: \[\widehat {IND} + \widehat {DNC} = 90^\circ + 90^\circ \] hay \[\widehat {INC} = 180^\circ \].

Do đó, I, N, C thẳng hàng.

Xét ∆CDK và ∆MIC có:

\[\widehat {DCK} = \widehat {IMC} = 90^\circ \],

DC = MI = AD

\[\widehat {KDC} = \widehat {CIM}\] (cặp góc nhọn có cạnh tương ứng với góc)

Do đó, ∆CDK = ∆MIC, suy ra CK = MC.

Suy ra ∆CMK cân tại C.

CA là tia phân giác \[\widehat {MCK}\] (vì ABCD là hình vuông)

Suy ra AC ⊥ KM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Có hai đường cao BD và CE cắt nhau tại H nên H là trực tâm của ∆ABC.

Do đó AH ⊥ BC.

Có M là trung điểm BC nên OM ⊥ BC.

Suy ra OM // AH.

Có BF // EC (cùng vuông với AB)

BD // FC (cùng vuông với AC)

Do đó, BHCF là hình bình hành, có M là trung điểm BC, nên M cũng là trung điểm của đường chép HF.

Mà OM // AH nên OM là đường trung bình của tam giác HAF.

Suy ra \[HM = \frac{{HF}}{2}.\]

Do đó, ý D sai.

Lời giải

Đáp án đúng là: B

Ta có:

\[\widehat {{A_1}} = \widehat {{A_2}}\] mà \[\widehat {{A_2}} = \widehat {{B_1}}\] (góc nội tiếp)

Nên \[\widehat {{A_1}} = \widehat {{B_1}}\].

Do đó, ∆MBD ᔕ ∆MAB (g.g)

Suy ra \[\frac{{MD}}{{MB}} = \frac{{MB}}{{MA}}\] suy ra \[\frac{{MD}}{{MK}} = \frac{{MK}}{{MA}}\].

Kết hợp với \[\widehat {DMK} = \widehat {KMA}\] nên ∆DMK ᔕ ∆KMA (g.g)

Suy ra \[\widehat {MDK} = \widehat {MKA}\] = 90°.

Vậy DK ⊥ AM.

Vậy phát biểu (I) và (III) là các phát biểu đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay