Câu hỏi:

27/05/2025 427 Lưu

Cho hình vuông ABCD, M là điểm tùy ý thuộc cạnh CD. Hai đường tròn đường kính CD và AM cắt nhau tại N (khác D). Gọi K là giao điểm của DN và BC. Khi đó,

(I). I, N, C thẳng hàng .

(II). ∆CDK = ∆MIC.

(III). AC ⊥ KM.

Số phát biểu đúng là

A. 0.

B. 1.

C. 2.

D. 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Gọi I là giao điểm của đường tròn (O) đường kính AM và CD.

Do đó, \[\widehat {AIM} = 90^\circ \].

Tứ giác DAIM là hình chữ nhật

(vì \[\widehat {AIM} = \widehat {IAD} = \widehat {ADM} = 90^\circ \])

Do đó, \[\widehat {IMD} = 90^\circ \] nên DI là đường kính của (O).

Suy ra \[\widehat {DNC} = 90^\circ \].

Ta có: \[\widehat {IND} + \widehat {DNC} = 90^\circ + 90^\circ \] hay \[\widehat {INC} = 180^\circ \].

Do đó, I, N, C thẳng hàng.

Xét ∆CDK và ∆MIC có:

\[\widehat {DCK} = \widehat {IMC} = 90^\circ \],

DC = MI = AD

\[\widehat {KDC} = \widehat {CIM}\] (cặp góc nhọn có cạnh tương ứng với góc)

Do đó, ∆CDK = ∆MIC, suy ra CK = MC.

Suy ra ∆CMK cân tại C.

CA là tia phân giác \[\widehat {MCK}\] (vì ABCD là hình vuông)

Suy ra AC ⊥ KM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gọi E là giao điểm của IM và AD.

Ta có: AC ⊥ BD tại I nên ∆BCI vuông tại I.

Mà MB = MC nên MI = MB (tính chất đường trung tuyến trong tam giác vuông).

Do đó, ∆MBI cân.

Suy ra \[\widehat {MIB} = \widehat {MBI}\] mà \[\widehat {NID} = \widehat {BIM}\] đối đỉnh do đó \[\widehat {MBI} = \widehat {NID}\].

Ta có: \[\widehat {BDA} = \widehat {BCA}\](góc nội tiếp chắn cung AB)

Mà \[\widehat {BCA} + \widehat {MBI} = 90^\circ \] (tam giác BIC vuông tại I).

Suy ra \[\widehat {NID} + \widehat {BDA} = 90^\circ \] hay \[\widehat {AEI} = 90^\circ \] hay MI ⊥ AD.

Lời giải

Đáp án đúng là: C

Vì ∆O

'AB cân tại O' nên \[\widehat {O'AB} = \widehat {O'BA}\].

∆OAC cân tại O nên \[\widehat {OAC} = \widehat {OCA}\].

Suy ra \[\widehat {OCA} = \widehat {O'BA}\], mà hai góc này ở vị trí đồng vị, do đó, O'B // OC.

Mặt khác MN là tiếp tuyến của (O') tại B.

Do đó, O'B ⊥MN. Suy ra OC ⊥ MN.

Trong đường tròn (O), có ON là đường trung trực của MN.

Suy ra CM = CN từ đó .

Do đó, \[\widehat {MAC} = \widehat {NAC}\].

Hay AC là phân giác của góc MAN.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\widehat {BOD} = \widehat {BOC}\].

B. \[\widehat {BOD} = \widehat {DOC}\].

C. OD là đường trung tuyến trong ∆BOC.

D. OD ⊥ BC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP