Câu hỏi:

27/05/2025 16

Cho đường tròn (O) và điểm E nằm ngoài đường tròn. Vẽ cát tuyến EAB và ECD với đường tròn (A nằm giữa E và B, C nằm giữa E và D). Gọi F là một điểm trên đường tròn sao cho B nằm chính giữa cung DF, I là giao điểm của FA và BC. Biết \[\widehat E = 25^\circ \], số đo góc AIC là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

 Cho đường tròn (O) và điểm E nằm ngoài đường tròn. Vẽ cát tuyến EAB và ECD với đường tròn (A nằm giữa E và B, C nằm giữa E và D). Gọi F là một điểm trên đường tròn sao cho B nằm chính giữa c (ảnh 1)

Vì B nằm chính giữa cung DF nên sdDF=sdBF

Mặt khác góc tại E và I là hai góc có đỉnh nằm ngoài đường tròn nên

E^=12sdBD+sdAC=12sdBFsdAC=I^

Theo đề bài, ta có: \[\widehat E = \widehat I = 25^\circ \].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O) đường kính BC cố định. Điểm A di động trên đường tròn khác B và C. Vẽ đường kính AD. Khi A ở vị trí mà diện tích tam giác ABC đạt giá trị lớn nhất thì góc ADC bằng

Xem đáp án » 27/05/2025 31

Câu 2:

Cho AB và CD là hai đường kính vuông góc với nhau của đường tròn (O; R). Qua điểm M thuộc cung nhỏ AC (M ≠ A, M ≠ E) kẻ tiếp tuyến với đường tròn cắt AB, CD lần lượt tại E, F. Chọn khẳng định đúng trong các khẳng định sau.

Xem đáp án » 27/05/2025 29

Câu 3:

Qua điểm A nằm ngoài đường tròn (O) kẻ hai cát tuyến ABC và ADE với đường tròn đó (B nằm giữa A và C, D nằm giữa A và E). Kẻ dây BF // DE. Chọn khẳng định sai trong các khẳng định sau.

Xem đáp án » 27/05/2025 19

Câu 4:

Cho đường tròn tâm O, đường kính AC. Lấy B ∈ (O) sao cho \[\widehat {ACB} = 70^\circ \]. Kẻ BD ⊥ AC (D ∈ (O)). Số đo \[\widehat {CDB}\] là

Xem đáp án » 27/05/2025 16

Câu 5:

Cho (O; 4) có dây AC bằng cạnh hình vuông nội tiếp và dây BC bằng cạnh tam giác đều nội tiếp đường tròn đó (điểm C và A nằm cùng phía với BO). Tính số đo góc ACB.

Xem đáp án » 27/05/2025 15

Câu 6:

Cho đường tròn tâm O và hai dây cung AB // CD. Trên cung AB lấy điểm M. Chọn khẳng định đúng trong các khẳng định dưới đây.

Xem đáp án » 27/05/2025 15
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay