Câu hỏi:
27/05/2025 32Cho tam giác ABC vuông tại A và B điểm nằm giữa A và B. Đường tròn đường kính BD cắt BC tại E. Các đường thẳng CD, AE lần lượt cắt đường tròn tại các điểm thứ hai là F và G. Khi đó, kết luận sai là
Quảng cáo
Trả lời:
Đáp án đúng là: C
•
Xét đường tròn đường kính BD có góc BED là góc nội tiếp chắn nửa đường tròn nên \[\widehat {BED} = 90^\circ \].Xét ∆ABC và ∆BED có \[\widehat {EBD}\] chung và \[\widehat {CED} + \widehat {DAC} = 90^\circ + 90^\circ = 180^\circ \].
Suy ra ∆ABC ᔕ ∆EBD (g.g)
Do đó, ý A đúng.
• Xét ∆ADC vuông tại A nên A, D, C thuộc đường tròn đường kính DC (1).
∆DEC vuông tại E nên E, D, C thuộc đường tròn đường kính DC (2).
Từ (1) và (2) suy ra A, D, C, E cùng thuộc một đường tròn đường kính DC hay tứ giác ADEC nội tiếp.
Do đó, ý B đúng.
• Chứng minh tương tự bốn điểm A, F, B, C cùng thuộc đường tròn đường kính BC.
Suy ra, tứ giác AFBC nội tiếp đường tròn.
Do đó, phương án C sai.
• Gọi giao điểm của BF và AC là H.
Xét ∆BHC có đường cao CF và BA cắt nhau tại D nên D là trực tâm của tam giác BHC.
Mà DE ⊥ AB nên DE là đường cao của tam giác BHC hay H, E, D thẳng hàng.
Suy ra DE, AC và BF đồng quy tại H.
Do đó, đáp án D đúng.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
• Ta có: \[\widehat {BMA} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn) hay \[\widehat {BME} = 90^\circ \]
Xét ∆BME vuông tại M nên B, M ,E thuộc đường tròn đường kính BE (1)
Xét ∆EFB vuông tại F nên B, F, E thuộc đường tròn đường kính BE (2)
Từ (1) và (2) suy ra B, M, E, F cùng thuộc đường tròn đường kính BE hay tứ giác BMEF nội tiếp.
Do đó, (I) đúng.
• Ta có AB ⊥ CD tại F và AB là đường kính
Ta chứng minh được ∆OCD cân tại O do OC = OD = R nên F là trung điểm của CD.
Do đó, AB là đường trung trực của CD nên .
Ta có: và .
Suy ra \[\widehat {CMA} = \widehat {DMA}\], do đó AM là phân giác của góc CMD.
Vậy ý (II) đúng.
• Xét ∆ACE và ∆ACM có:
\[\widehat A\] chung (gt)
Suy ra ∆ACE ᔕ ∆ACM (g.g)
Suy ra \[\frac{{AC}}{{AM}} = \frac{{AE}}{{AC}}\] hay AC2 = AE.AM.
Do đó ý (III) đúng.
Vậy cả ba phát biểu trên đều đúng.
Lời giải
Đáp án đúng là: C
• Ta có: \[\widehat {BAC} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn).
Mà ABCD là hình bình hành nên AB // CD.
Do đó, \[\widehat {ACD} = \widehat {BAC} = 90^\circ \] (so le trong)
Suy ra ∆ACD vuông tại C nên A, C, D thuộc đường tròn đường kính AD (1).
∆ADE vuông tại E nên E, A, D thuộc đường tròn đường kính AD (2).
Từ (1) và (2) suy ra A, E, C, D cùng thuộc một đường tròn hay tứ giác AEDC nội tiếp.
Do đó, ý (I) đúng.
• Do tứ giác AEDC nội tiếp nên \[\widehat {CAE} = \widehat {CDE}\] (góc nội tiếp chắn cung EC)
Mà AB // CD nên \[\widehat {CDE} = \widehat {ABD}\] (so le trong)
Suy ra \[\widehat {CAE} = \widehat {ABD}\]. (3)
Mà \[\widehat {ABD}\] là góc nội tiếp chắn cung AF, \[\widehat {AOF}\] là góc ở tâm chắn cung AF nên \[\widehat {AOF} = 2\widehat {ABD}\]. (4)
Từ (3) và (4) suy ra \[\widehat {AOF} = 2\widehat {CAE}\].
Do đó, ý (II) sai.
• Ta có: \[\widehat {BFC} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn) hay FC ⊥ BD.
Có AE ⊥ BD nên FC // AE.
Lại có \[\widehat {AFB} = \widehat {ACB} = \widehat {CAD} = \widehat {FEC}\] nên AF // EC.
Do đó, tứ giác AECF là hình bình hành.
Suy ra, ý (III) đúng.
• Gọi giao điểm của AC và BD là I, do tứ giác ABCD là hình bình hành nên AI = IC; IB = ID; AB = CD.
Xét ∆DIC vuông tại C có CF ⊥ BD
Chứng minh được ∆CDI ᔕ ∆FDC (g.g) suy ra \[\frac{{CD}}{{FD}} = \frac{{DI}}{{DC}}\] hay CD2 = FD.DI.
Mà AB = DC nên AB2 = DF.DI.
Suy ra 2AB2 = 2.DF.DI mà 2DI = BD do đó, 2AB2 = DF.DB.
Do đó, ý (IV) đúng.
Vậy có 3 phát biểu đúng là (I), (III), (IV).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
15 câu Trắc nghiệm Toán 9 Cánh diều Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án