Câu hỏi:
31/05/2025 41
Cho hình lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng \(2a\) và cạnh bên bằng \(3a\). Khi đó:
a) Gọi \(M\) là trung điểm A'B', ta có \(C'M = a\sqrt 2 \).
b) Góc phẳng nhị diện [C, A'B', C'] bằng 60°.
c) Gọi \(K\) là trung điểm \(AB\),\(M\) là trung điểm A'B', khi đó: A'B' ^ MK.
d) Góc phẳng nhị diện [A, A'B', C] bằng 30°.
Cho hình lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng \(2a\) và cạnh bên bằng \(3a\). Khi đó:
a) Gọi \(M\) là trung điểm A'B', ta có \(C'M = a\sqrt 2 \).
b) Góc phẳng nhị diện [C, A'B', C'] bằng 60°.
c) Gọi \(K\) là trung điểm \(AB\),\(M\) là trung điểm A'B', khi đó: A'B' ^ MK.
d) Góc phẳng nhị diện [A, A'B', C] bằng 30°.
Quảng cáo
Trả lời:
a) Gọi \(M\) là trung điểm A'B', suy ra C'M ^ A'B' (do tam giác A'B'C' đều).
Ta có: \(C'M = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 \).
b) Mặt khác CC' ^ A'B' (do ABC.A'B'C' là lăng trụ đứng).
Suy ra A'B' ^ (CMC') hay A'B' ^ CM.
Vậy \(\left( {CM,C'M} \right) = \widehat {CMC'}\) là góc phẳng nhị diện [C, A'B', C'] .
Suy ra \(\tan \widehat {CMC'} = \frac{{CC'}}{{C'M}} = \frac{{3a}}{{a\sqrt 3 }} = \sqrt 3 \Rightarrow \widehat {CMC'} = 60^\circ \).
c) Gọi \(K\) là trung điểm \(AB\) thì \(MK\) là đường trung bình của hình chữ nhật \(ABB'A' \Rightarrow MK//AA' \Rightarrow A'B' \bot MK\).
d) ta lại có A'B' ^ CM (câu a).
Vậy \((MK,CM) = \widehat {CMK}\) là góc phẳng nhị diện [A, A'B', C'] với \(\widehat {CMK} = 90^\circ - 60^\circ = 30^\circ \).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
Kẻ \(AM \bot BC\) tại \(M\) mà BC ^ SA nên BC ^ (SAM) Þ BC ^ SM.
Suy ra \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {S,BC,A} \right]\).
Tam giác ABC vuông cân tại A nên \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {2{a^2} + 2{a^2}} = 2a\) Þ \(AM = \frac{{BC}}{2} = a\).
Ta có \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).
Lời giải
Trong mặt phẳng (A'B'C'D'), kẻ A'H ^ B'D' tại \(H\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{B'D' \bot A'H}\\{B'D' \bot AA'\left( {{\rm{do }}AA' \bot \left( {A'B'C'D'} \right)} \right)}\end{array} \Rightarrow B'D' \bot \left( {AA'H} \right) \Rightarrow B'D' \bot AH} \right.\).
Do đó \(\widehat {AHA'}\) là góc phẳng nhị diện \(\left[ {A,B'D',A'} \right]\).
Tam giác A'B'D' vuông tại A' có đường cao A'H nên
\(\frac{1}{{A'{H^2}}} = \frac{1}{{A'{{B'}^2}}} + \frac{1}{{A'{{D'}^2}}} \Rightarrow A'H = \frac{{A'B' \cdot A'D'}}{{\sqrt {A'{{B'}^2} + A'{{D'}^2}} }} = \frac{{357}}{{2\sqrt {730} }}{\rm{. }}\)
Tam giác \(AHA'\) vuông tại \(A'\) có:
\(\tan \widehat {AHA'} = \frac{{AA'}}{{A'H}} = \frac{{8,2}}{{\frac{{357}}{{2\sqrt {730} }}}} \Rightarrow \widehat {AHA'} \approx 51,1^\circ \).
Trả lời: 51,1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.