Câu hỏi:

31/05/2025 70 Lưu

Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(A\)\(SA \bot (ABC)\). Khi đó:

a) \((SAC) \bot (ABC)\).

b) Gọi \(H\) là hình chiếu của \(A\) trên \(BC\). Khi đó: \((SAH) \bot (SBC)\).

c) \(\left( {AB,SC} \right) = 60^\circ \)

d) Gọi \(K\) là hình chiếu của \(A\) trên \(SC\). Khi đó: \(\left( {(ABK),(SBC)} \right) = 60^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

V (ảnh 1)

a) \(\left\{ {\begin{array}{*{20}{l}}{SA \bot (ABC)}\\{(SAC) \supset SA}\end{array} \Rightarrow (SAC) \bot (ABC)} \right.\).

b) Có SA ^ BC (do SA ^ (ABC)) và AH ^ BC Þ BC ^ (SAH).

 \(\left\{ {\begin{array}{*{20}{l}}{BC \bot (SAH)}\\{(SBC) \supset BC}\end{array} \Rightarrow (SBC) \bot (SAH)} \right.\).

c) Có SA ^ AB, AB ^ AC Þ AB ^ (SAC) Þ AB ^ SC.

d) Hạ \(AK \bot SC\) và AB ^ SC, nên \(SC \bot (ABK)\).

Vậy ta có \(\left\{ {\begin{array}{*{20}{l}}{SC \bot (ABK)}\\{(SBC) \supset SC}\end{array} \Rightarrow (SBC) \bot (ABK)} \right.\).

Đáp án: a) Đúng;    b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

A

Góc giữa (SBD) và (ABCD) là (ảnh 1)

Ta có \(BD \bot AC\) và BD ^ SA nên BD ^ (SAC) Þ BD ^ SO.

\(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\\BD = \left( {SBD} \right) \cap \left( {ABCD} \right)\end{array} \right.\) nên góc giữa (SBD) và (ABCD) là góc giữa AC và SO là \(\widehat {SOA}\) (do DSAC vuông tại A).

Lời giải

a) Hình lập phương có 6 mặt đều là hình vuông nên AA' ^ AB và AA' ^ AD Þ AA' ^ (ABCD).

b) Ta có AC // A'C' mà A'C' ^ B'D' Þ AC ^ B'D'.

c) Có CD // AB Þ (BA', CD) = (BA', BA) = \(\widehat {ABA'} = 45^\circ \) (do ABB'A' là hình vuông).

d) Hình chiếu vuông góc của tam giác A'BC' lên mặt phẳng (ABCD) là tam giác ABC.

Diện tích hình vuông ABCD là a2 suy ra diện tích tam giác ABC là \(\frac{{{a^2}}}{2}\).

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP