Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(A\) và \(SA \bot (ABC)\). Khi đó:
a) \((SAC) \bot (ABC)\).
b) Gọi \(H\) là hình chiếu của \(A\) trên \(BC\). Khi đó: \((SAH) \bot (SBC)\).
c) \(\left( {AB,SC} \right) = 60^\circ \)
d) Gọi \(K\) là hình chiếu của \(A\) trên \(SC\). Khi đó: \(\left( {(ABK),(SBC)} \right) = 60^\circ \).
Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(A\) và \(SA \bot (ABC)\). Khi đó:
a) \((SAC) \bot (ABC)\).
b) Gọi \(H\) là hình chiếu của \(A\) trên \(BC\). Khi đó: \((SAH) \bot (SBC)\).
c) \(\left( {AB,SC} \right) = 60^\circ \)
d) Gọi \(K\) là hình chiếu của \(A\) trên \(SC\). Khi đó: \(\left( {(ABK),(SBC)} \right) = 60^\circ \).
Quảng cáo
Trả lời:

a) \(\left\{ {\begin{array}{*{20}{l}}{SA \bot (ABC)}\\{(SAC) \supset SA}\end{array} \Rightarrow (SAC) \bot (ABC)} \right.\).
b) Có SA ^ BC (do SA ^ (ABC)) và AH ^ BC Þ BC ^ (SAH).
\(\left\{ {\begin{array}{*{20}{l}}{BC \bot (SAH)}\\{(SBC) \supset BC}\end{array} \Rightarrow (SBC) \bot (SAH)} \right.\).
c) Có SA ^ AB, AB ^ AC Þ AB ^ (SAC) Þ AB ^ SC.
d) Hạ \(AK \bot SC\) và AB ^ SC, nên \(SC \bot (ABK)\).
Vậy ta có \(\left\{ {\begin{array}{*{20}{l}}{SC \bot (ABK)}\\{(SBC) \supset SC}\end{array} \Rightarrow (SBC) \bot (ABK)} \right.\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
A

Ta có \(BD \bot AC\) và BD ^ SA nên BD ^ (SAC) Þ BD ^ SO.
Vì \(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\\BD = \left( {SBD} \right) \cap \left( {ABCD} \right)\end{array} \right.\) nên góc giữa (SBD) và (ABCD) là góc giữa AC và SO là \(\widehat {SOA}\) (do DSAC vuông tại A).
Lời giải

Ta có \[\left\{ \begin{array}{l}BC = \left( {BCD'A'} \right) \cap \left( {ABCD} \right)\\BC \bot AB\\BC \bot A'B\left( {BC \bot \left( {ABB'A'} \right)} \right)\end{array} \right.\]Þ ((BCD'A'), (ABCD)) = (AB, A'B) = \(\widehat {ABA'} = 30^\circ \).
Tam giác A'AB vuông tại A có \(\tan \widehat {ABA'} = \frac{{AA'}}{{AB}} \Rightarrow AA' = \frac{{10\sqrt 3 }}{3}\) cm.
Tổng diện tích của sáu mặt khối gỗ là: \(2\left( {10.15 + 10.\frac{{10\sqrt 3 }}{3} + 15.\frac{{10\sqrt 3 }}{3}} \right) \approx 589\) cm2.
Trả lời: 589.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Tìm góc phẳng nhị diện [A, B'D', A'] (tính theo độ, làm tròn kết quả đến hàng phần mười). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/05/31-1748661368.png)