Câu hỏi:
13/07/2024 3,955Cho hai phân thức:
Để chứng tỏ rằng có thể chọn đa thức: x3 + 5x2 – 4x – 20 có thể làm mẫu thức chung ta chỉ cần chứng tỏ rằng nó chia hết cho mẫu thức của mỗi phân thức đã cho.
Câu hỏi trong đề: Giải Toán 8: Chương 2: Phân thức đại số !!
Quảng cáo
Trả lời:
Thật vậy, ta có:
x3 + 5x2 – 4x – 20
= x3 + 3x2 – 10x + 2x2 + 6x – 20
= x(x2 + 3x – 10) + 2(x2 + 3x – 10)
= (x + 2)(x2 + 3x – 10)
⇒ x3 + 5x2 – 4x – 20 chia hết cho x2 + 3x – 10
x3 + 5x2 – 4x – 20
= x3 + 7x2 + 10x – 2x2 – 14x – 20
= x(x2 + 7x + 10) – 2.(x2 + 7x + 10)
= (x – 2)(x2 + 7x + 10)
⇒ x3 + 5x2 – 4x – 20 chia hết cho x2 + 7x + 10
Do đó có thể chọn mẫu thức chung là x3 + 5x2 – 4x – 20.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
+ Phân tích các mẫu thức thành nhân tử để tìm mẫu thức chung
2x + 6 = 2.(x + 3)
x2 – 9 = (x – 3)(x + 3)
⇒ Mẫu thức chung là 2(x + 3)(x – 3)
Nhân tử phụ thứ nhất: x- 3
Nhân tử phụ thứ hai: 2
+ Quy đồng :
Lời giải
+ Phân tích mẫu thức thành nhân tử để tìm mẫu thức chung
2x + 4 = 2.(x + 2)
x2 – 4 = (x – 2)(x + 2)
⇒ MTC = 2.(x – 2)(x + 2)
+ Nhân tử phụ :
2.(x – 2)(x + 2) : 2(x + 2) = x – 2
2(x – 2)(x + 2) : (x – 2)(x + 2) = 2.
+ Quy đồng :
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.