Một toà nhà có chiều cao của các tầng là như nhau. Một chiếc thang máy di chuyển từ tầng 15 lên tầng 22 của toà nhà, sau đó di chuyển từ tầng 22 lên tầng 29. Các vectơ biểu diễn độ dịch chuyển của thang máy trong hai lần di chuyển đó có bằng nhau không? Giải thích vì sao.

Quảng cáo
Trả lời:

Gọi vectơ biểu diễn độ dịch chuyển của thang máy từ tầng 15 lên tầng 22 của tòa nhà là \(\vec a\). Gọi vectơ biểu diễn độ dịch chuyển của thang máy từ tầng 22 lên tầng 29 của tòa nhà là \(\vec b\).
Vì hai vectơ \(\vec a\) và \(\vec b\) đều dịch chuyển từ tầng thấp lên tầng cao nên hai vectơ \(\vec a\) và \(\vec b\) có cùng hướng (1).
Độ dài vectơ \(\vec a\) là: \(|\vec a| = 7\), độ dài vectơ \(\vec b\) là: \(|\vec b| = 7\) nên \(|\vec a| = |\vec b| = 7\) (2)
Từ (1) và (2) ta có: \(\vec a = \vec b\). Vậy các vectơ biểu diễn độ dịch chuyển của thang máy trong hai lần di chuyền đó có bằng nhau.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải

Gọi \[{A_1}{\rm{, }}{B_1},{C_1}\] lần lượt là các điểm sao cho \[\overrightarrow {O{A_1}} = \overrightarrow {{F_1}} ;\overrightarrow {O{B_1}} = \overrightarrow {{F_2}} ;\overrightarrow {O{C_1}} = \overrightarrow {{F_3}} \]. Lấy các điểm \[{D_1},{A'_1}{\rm{, }}{B'_1},{D'_1}\] sao cho \[O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}B'\] là hình hộp (Hình 15).
Khi đó, áp dụng quy tắc hình hộp, ta có: \[{\overrightarrow {OA} _1} + \overrightarrow {O{B_1}} + \overrightarrow {O{C_1}} {\rm{ = }}\overrightarrow {O{D_1}} \]
Mặt khác, do các lực căng \[\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \] đôi một vuông góc và \[\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 15{\rm{ }}(N)\] nên hình hộp
\[O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}B'\] có ba cạnh OA1, OB1, OC1, đôi một vuông góc và bằng nhau. Vì thế hình hộp đó là hình lập phương có độ dài cạnh bằng 15. Suy ra độ dài đường chéo \[O{D'_1}\] của hình lập phương đó bằng \[15\sqrt 3 \].
Do chiếc đèn ở vị trí cân bằng nên \[\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow P \], ở đó \[\overrightarrow P \] là trọng lực tác dụng lên chiếc đèn. Suy ra trọng lượng của chiếc đèn là: \[\left| {\overrightarrow P } \right| = \left| {\overrightarrow {O{{D'}_1}} } \right| = 15\sqrt 3 \] (N).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.