Khi chuyển động trong không gian, máy bay luôn chịu tác động của bốn lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học (H.2.20). Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900 km/h lên 920 km/h, trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900 km/h và 920 km/h lần lượt được biểu diễn bởi hai vectơ \[\overrightarrow {{F_1}} \] và \[\overrightarrow {{F_2}} \]. Hãy giải thích vì sao \[\overrightarrow {{F_1}} = k\overrightarrow {{F_2}} \], với k là một số thực dương nào đó. Tính giá trị của k (làm tròn kết quả đến chữ số thập phân thứ hai).

Quảng cáo
Trả lời:

Vì trong quá trình máy bay tăng vận tốc từ \(900\;{\rm{km}}/{\rm{h}}\) lên \(920\;{\rm{km}}/{\rm{h}}\) máy bay giữ nguyên hướng bay nên vectơ \({\vec F_1}\) và \({\vec F_2}\) có cùng hướng. Do đó, \({\vec F_1} = k{\vec F_2}\) với k là một số thực dương nào đó (1).
Gọi \({v_1},{v_2}\) lần lượt là vận tốc của của chiếc máy bay khi đạt \(900\;{\rm{km}}/{\rm{h}}\) và \(920\;{\rm{km}}/{\rm{h}}\).
Suy ra \({v_1} = 900(\;{\rm{km}}/{\rm{h}}),{v_2} = 920(\;{\rm{km}}/{\rm{h}})\)
vì lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay nên \(\frac{{\left| {{{\vec F}_1}} \right|}}{{\left| {{{\vec F}_2}} \right|}} = \frac{{v_1^2}}{{v_2^2}} = \frac{{{{900}^2}}}{{{{920}^2}}} = \frac{{2025}}{{2116}} \Rightarrow \left| {{{\vec F}_1}} \right| = \frac{{2025}}{{2116}}\left| {{{\vec F}_2}} \right|\)
Từ (1) và (2) ta có: \(\overrightarrow {{F_1}} = \frac{{2025}}{{2116}}\overrightarrow {{F_2}} \Rightarrow k = \frac{{2025}}{{2116}} \approx 0,96\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải

Gọi \[{A_1}{\rm{, }}{B_1},{C_1}\] lần lượt là các điểm sao cho \[\overrightarrow {O{A_1}} = \overrightarrow {{F_1}} ;\overrightarrow {O{B_1}} = \overrightarrow {{F_2}} ;\overrightarrow {O{C_1}} = \overrightarrow {{F_3}} \]. Lấy các điểm \[{D_1},{A'_1}{\rm{, }}{B'_1},{D'_1}\] sao cho \[O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}B'\] là hình hộp (Hình 15).
Khi đó, áp dụng quy tắc hình hộp, ta có: \[{\overrightarrow {OA} _1} + \overrightarrow {O{B_1}} + \overrightarrow {O{C_1}} {\rm{ = }}\overrightarrow {O{D_1}} \]
Mặt khác, do các lực căng \[\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \] đôi một vuông góc và \[\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 15{\rm{ }}(N)\] nên hình hộp
\[O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}B'\] có ba cạnh OA1, OB1, OC1, đôi một vuông góc và bằng nhau. Vì thế hình hộp đó là hình lập phương có độ dài cạnh bằng 15. Suy ra độ dài đường chéo \[O{D'_1}\] của hình lập phương đó bằng \[15\sqrt 3 \].
Do chiếc đèn ở vị trí cân bằng nên \[\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow P \], ở đó \[\overrightarrow P \] là trọng lực tác dụng lên chiếc đèn. Suy ra trọng lượng của chiếc đèn là: \[\left| {\overrightarrow P } \right| = \left| {\overrightarrow {O{{D'}_1}} } \right| = 15\sqrt 3 \] (N).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.