Câu hỏi:

26/07/2025 5 Lưu

Ba lực có điểm đặt tại một đỉnh của hình lập phương, cùng phương với ba cạnh và cùng có cường độ là 5 N. Tính cường độ của hợp lực.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Ba lực có điểm đặt tại một đỉnh của hình lập phương, cùng phương với ba cạnh và cùng có cường độ là 5 N (ảnh 1)

Giả sử 3 lực có điếm đặt là \({\rm{A}}\) và các lực là \(\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {A{A^\prime }} \).

Theo quy tắc hình bình hành ta có hợp lực: \(\overrightarrow {A{C^\prime }}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {A{A^\prime }} \). Theo đề ta có \(|\overrightarrow {AB} | = |\overrightarrow {AD} | = \left| {\overrightarrow {A{A^\prime }} } \right| = 5\).

Mà \({\rm{AC}}\) là đường chéo của của hình lập phương nên \(A{C^\prime } = \sqrt {A{B^2} + A{D^2} + A{A^{\prime 2}}}  = 5\sqrt 3 \) Vậy cường độ của hợp lực là \(5\sqrt 3 N\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 1,5 tấn = 1 500 kg.
Độ lớn của trọng lực tác dụng lên chiếc xe là: \[\left| {\overrightarrow P } \right|\] = m \[\left| {\overrightarrow g } \right|\] = 1 500 . 9,8 = 14 700 (N). Vectơ \[\overrightarrow d \] biểu thị độ dịch chuyển của xe có độ dài là \[\left| {\overrightarrow d } \right|\] = 30 (m) và\[\left( {\overrightarrow P ,\overrightarrow d } \right) = {90^o} - {5^o} = {85^o}\]
 
Công sinh ra bởi trọng lực \[\overrightarrow P \] khi xe đi hết đoạn đường dốc dài 30 m là: A=P.d=P.d.cosP,d=14700.30.cos85o38436 (J)

Lời giải

Vì trong quá trình máy bay tăng vận tốc từ \(900\;{\rm{km}}/{\rm{h}}\) lên \(920\;{\rm{km}}/{\rm{h}}\) máy bay giữ nguyên hướng bay nên vectơ \({\vec F_1}\) và \({\vec F_2}\) có cùng hướng. Do đó, \({\vec F_1} = k{\vec F_2}\) với k là một số thực dương nào đó (1).

Gọi \({v_1},{v_2}\) lần lượt là vận tốc của của chiếc máy bay khi đạt \(900\;{\rm{km}}/{\rm{h}}\) và \(920\;{\rm{km}}/{\rm{h}}\).

Suy ra \({v_1} = 900(\;{\rm{km}}/{\rm{h}}),{v_2} = 920(\;{\rm{km}}/{\rm{h}})\)

vì lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay nên \(\frac{{\left| {{{\vec F}_1}} \right|}}{{\left| {{{\vec F}_2}} \right|}} = \frac{{v_1^2}}{{v_2^2}} = \frac{{{{900}^2}}}{{{{920}^2}}} = \frac{{2025}}{{2116}} \Rightarrow \left| {{{\vec F}_1}} \right| = \frac{{2025}}{{2116}}\left| {{{\vec F}_2}} \right|\)

Từ (1) và (2) ta có: \(\overrightarrow {{F_1}}  = \frac{{2025}}{{2116}}\overrightarrow {{F_2}}  \Rightarrow k = \frac{{2025}}{{2116}} \approx 0,96\)