Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 8 m, chiều rộng là 6 m và chiều cao là 3 m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục toạ độ Oxyz có gốc O trùng với một góc phòng và mặt phẳng (Oxy) trùng với mặt sàn, đơn vị đo được lấy theo mét (H.2.51). Hãy tìm toạ độ của điểm treo đèn.

Quảng cáo
Trả lời:

Giả sử căn phòng hình hộp chữ nhật được mô phỏng như hình vẽ.
Khi đó ta có \({{\rm{B}}^\prime }(6;8;3)\) và \({O^\prime }(0;0;3)\).
Gọi \({\rm{I}}\) là điềm chính giữa trần nhà của phòng học.
Vì \({{\rm{O}}^\prime }{{\rm{A}}^\prime }{{\rm{B}}^\prime }{{\rm{C}}^\prime }\) là hình chữ nhật nên \({\rm{I}}\) là trung diếm của \({{\rm{O}}^\prime }{{\rm{B}}^\prime }\).
Do đó \(\left\{ {\begin{array}{*{20}{l}}{{x_I} = \frac{{6 + 0}}{2}}\\{{y_I} = \frac{{8 + 0}}{2}}\\{{z_I} = \frac{{3 + 3}}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_I} = 3}\\{{y_I} = 4}\\{{z_I} = 3}\end{array}} \right.} \right.\). Vậy tọa độ điếm treo đèn là \((3;4;3)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Lời giải
Theo giả thiết, ta có các diếm \({\rm{E}}(0;0;6),{{\rm{A}}_1}(0;1;0),{A_2}\left( {\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0} \right),{A_3}\left( { - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0} \right)\).
Suy ra \(\overline {{\rm{E}}{{\rm{A}}_1}} = (0 - 0;1 - 0;0 - 6)\) hay \(\overrightarrow {{\rm{E}}{{\rm{A}}_1}} = (0;1; - 6)\);
\(\overrightarrow {{\rm{E}}{{\rm{A}}_2}} = \left( {\frac{{\sqrt 3 }}{2} - 0; - \frac{1}{2} - 0;0 - 6} \right){\rm{ hay }}\overrightarrow {{\rm{E}}{{\rm{A}}_2}} = \left( {\frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 6} \right);\)
\({\rm{ }}\overrightarrow {{\rm{E}}{{\rm{A}}_3}} = \left( { - \frac{{\sqrt 3 }}{2} - 0; - \frac{1}{2} - 0;0 - 6} \right){\rm{ hay }}\overrightarrow {{\rm{E}}{{\rm{A}}_3}} = \left( { - \frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 6} \right).\)
Vî vậy, tồn tại hằng số \({\rm{c}} \ne 0\) sao cho:
\(\overrightarrow {{F_1}} = \overrightarrow {E{A_1}} = (0;c; - 6c);\overrightarrow {{F_2}} = \overrightarrow {E{A_2}} = \left( {\frac{{\sqrt 3 }}{2}c; - \frac{1}{2}c; - 6c} \right);\overrightarrow {{F_3}} = c\overrightarrow {E{A_3}} = \left( { - \frac{{\sqrt 3 }}{2}c; - \frac{1}{2}c; - 6c} \right).\)
Suy ra \({\vec F_1} + {\vec F_2} + {\vec F_3} = (0;0; - 18c)\).
Mặt khác, ta có: \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \vec F\), trong đó \(\vec F = (0;0; - 300)\) là trọng lực tác dụng lên máy quay. Suy ra \(18{\rm{c}} = - 300\), tức là \({\rm{c}} = \frac{{50}}{3}\).
Vậy: \({\vec F_1} = \left( {0;\frac{{50}}{3}; - 100} \right);\overrightarrow {{F_2}} = \left( {\frac{{25\sqrt 3 }}{3};\frac{{ - 25}}{3}; - 100} \right);{\vec F_3} = \left( {\frac{{ - 25\sqrt 3 }}{3};\frac{{ - 25}}{3}; - 100} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





