Câu hỏi:

30/07/2025 6 Lưu

Cho hàm số \(y = - {x^2} + 6x - 5\).

a) Giao điểm của đồ thị hàm số đã cho với trục tung tại điểm có tung độ bằng \( - 5\).

b) Đỉnh của đồ thị hàm số đã cho là \(I\left( {2;3} \right)\).

c) Giá trị lớn nhất của hàm số bằng \(3\).

d) Đường thẳng \(d:y = 4x - m\) cắt đồ thị hàm số đã cho tại 2 điểm phân biệt khi \(m > 4\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Đúng. Giao điểm của đồ thị hàm số với trục tung là điểm \(A\left( {0; - 5} \right)\).

b) Sai. Đỉnh của đồ thị hàm số là điểm \(I\left( {\frac{{ - b}}{{2a}};\frac{{ - \Delta }}{{4a}}} \right) = I\left( {3;4} \right)\).

c) Sai. Xét hàm số \(y = f\left( x \right) = - {x^2} + 6x - 5\), có \(a < 0\) nên giá trị lớn nhất của hàm số \(y = - {x^2} + 6x - 5\) là \(y = f\left( { - \frac{b}{{2a}}} \right) = f\left( 3 \right) = 4\).

d) Đúng. Xét phương trình hoành độ giao điểm của đường thẳng \(d\) và đồ thị \(\left( P \right)\) là:

\( - {x^2} + 6x - 5 = 4x - m \Leftrightarrow {x^2} - 2x + 5 - m = 0\) \(\left( 1 \right)\)

Vậy đường thẳng \(d:y = 4x - m\) cắt đồ thị \(\left( P \right)\) tại 2 điểm phân biệt \( \Leftrightarrow \left( 1 \right)\) có 2 nghiệm phân biệt \( \Leftrightarrow \Delta ' = 1 - 5 + m > 0 \Leftrightarrow m > 4.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Đúng. Trục đối xứng của đồ thị là đường thẳng \(x = - \frac{b}{{2a}} = - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Sai. Ta có \(x = 2 \Rightarrow y\left( 2 \right) = - 1\). Do đó \(I\left( {2; - 1} \right)\).

c) Sai. Giá trị nhỏ nhất của hàm số là \(y\left( 2 \right) = - 1\).

d) Đúng. Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 \Rightarrow A\left( {1;0} \right)}\\{x = 3 \Rightarrow B\left( {3;0} \right)}\end{array}} \right.\).

Cho  parabol   y = x 2 − 4 x + 3  . a) Trục đối xứng của đồ thị hàm số là đường thẳng   x = 2  .  b) Tọa độ đỉnh của parabol là   I ( 2 ; − 3 )  .  c) Giá trị nhỏ nhất của hàm số là   − 2  .  d) Parabol cắt trục   O x   tại hai điểm   A , B  . Khi đó diện tích tam giác   I A B   bằng   1  . (ảnh 1)

Ta có \({S_{\Delta IAB}} = \frac{1}{2}d\left( {I,AB} \right) \cdot AB = \frac{1}{2}d\left( {I,Ox} \right) \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Câu 2

Lời giải

Đáp án đúng là: D

Dựa vào đồ thị có:

\[\left( P \right):y = f\left( x \right) = {x^2} - 2x - 3\] có \[a = 1 > 0\] nên \[\left( P \right)\] có bề lõm hướng lên (loại hình \[2\]).

\[\left( P \right)\] có đỉnh \[I\] có \[{x_I} = 1\] (loại hình \[1\] và \[3\]).

Vậy \[\left( P \right):y = f\left( x \right) = {x^2} - 2x - 3\] có đồ thị là hình \[4\].

Câu 6

Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu

\({v_0}\left( {{\rm{m/s}}} \right)\) theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ \(Oxy\) sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là \(\left( {0;{y_0}} \right)\), \({y_0}\) là độ cao của quả bóng so với mặt sân. Gọi \(\alpha \) là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là \(y = \frac{{ - 4,9{x^2}}}{{v_0^2{{\cos }^2}\alpha }} + \tan \alpha \cdot x + {y_0}\).

Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu  v 0 ( m / s )   theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ   O x y   sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là   ( 0 ; y 0 )  ,   y 0   là độ cao của quả bóng so với mặt sân. Gọi   α   là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là   y = − 4 , 9 x 2 v 2 0 cos 2 α + tan α ⋅ x + y 0  .   Giả sử quả bóng nảy lên với vận tốc ban đầu   v 0 = 7 ( m / s )   ở độ cao   y 0 = 0 , 8 ( m )  .  a) Quỹ đạo chuyển động của quả bóng là   y = − 0 , 1 cos 2 α ⋅ x 2 + tan α ⋅ x + 0 , 8  .  b) Nếu   α = 30 ∘  , sau 2 giây quả bóng ở độ cao trên   1 , 7 ( m )  .  c) Nếu   α = 60 ∘  , quả bóng sẽ đạt độ cao tối đa là   3 ( m )  .  d) Nếu   α = 60 ∘   và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là   4 , 818 ( m )  . (ảnh 1)Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu  v 0 ( m / s )   theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ   O x y   sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là   ( 0 ; y 0 )  ,   y 0   là độ cao của quả bóng so với mặt sân. Gọi   α   là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là   y = − 4 , 9 x 2 v 2 0 cos 2 α + tan α ⋅ x + y 0  .   Giả sử quả bóng nảy lên với vận tốc ban đầu   v 0 = 7 ( m / s )   ở độ cao   y 0 = 0 , 8 ( m )  .  a) Quỹ đạo chuyển động của quả bóng là   y = − 0 , 1 cos 2 α ⋅ x 2 + tan α ⋅ x + 0 , 8  .  b) Nếu   α = 30 ∘  , sau 2 giây quả bóng ở độ cao trên   1 , 7 ( m )  .  c) Nếu   α = 60 ∘  , quả bóng sẽ đạt độ cao tối đa là   3 ( m )  .  d) Nếu   α = 60 ∘   và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là   4 , 818 ( m )  . (ảnh 2)

Giả sử quả bóng nảy lên với vận tốc ban đầu \({v_0} = 7\left( {{\rm{m/s}}} \right)\) ở độ cao \({y_0} = 0,8\,\left( {\rm{m}} \right)\).

a) Quỹ đạo chuyển động của quả bóng là \(y = \frac{{ - 0,1}}{{{{\cos }^2}\alpha }} \cdot {x^2} + \tan \alpha \cdot x + 0,8\).

b) Nếu \(\alpha = 30^\circ \), sau 2 giây quả bóng ở độ cao trên \(1,7\left( {\rm{m}} \right)\).

c) Nếu \(\alpha = 60^\circ \), quả bóng sẽ đạt độ cao tối đa là \(3\left( {\rm{m}} \right)\).

d) Nếu \(\alpha = 60^\circ \) và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là \(4,818\left( {\rm{m}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP