Cho hàm số \(y = - {x^2} + 6x - 5\).
a) Giao điểm của đồ thị hàm số đã cho với trục tung tại điểm có tung độ bằng \( - 5\).
b) Đỉnh của đồ thị hàm số đã cho là \(I\left( {2;3} \right)\).
c) Giá trị lớn nhất của hàm số bằng \(3\).
d) Đường thẳng \(d:y = 4x - m\) cắt đồ thị hàm số đã cho tại 2 điểm phân biệt khi \(m > 4\).
Quảng cáo
Trả lời:

Lời giải
a) Đúng. Giao điểm của đồ thị hàm số với trục tung là điểm \(A\left( {0; - 5} \right)\).
b) Sai. Đỉnh của đồ thị hàm số là điểm \(I\left( {\frac{{ - b}}{{2a}};\frac{{ - \Delta }}{{4a}}} \right) = I\left( {3;4} \right)\).
c) Sai. Xét hàm số \(y = f\left( x \right) = - {x^2} + 6x - 5\), có \(a < 0\) nên giá trị lớn nhất của hàm số \(y = - {x^2} + 6x - 5\) là \(y = f\left( { - \frac{b}{{2a}}} \right) = f\left( 3 \right) = 4\).
d) Đúng. Xét phương trình hoành độ giao điểm của đường thẳng \(d\) và đồ thị \(\left( P \right)\) là:
\( - {x^2} + 6x - 5 = 4x - m \Leftrightarrow {x^2} - 2x + 5 - m = 0\) \(\left( 1 \right)\)
Vậy đường thẳng \(d:y = 4x - m\) cắt đồ thị \(\left( P \right)\) tại 2 điểm phân biệt \( \Leftrightarrow \left( 1 \right)\) có 2 nghiệm phân biệt \( \Leftrightarrow \Delta ' = 1 - 5 + m > 0 \Leftrightarrow m > 4.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi \[x\] là giá bán thực tế của mỗi quả bưởi da xanh (\[x\]: đồng, \[35\,000 \le x \le 60\,000\]).
Tương ứng với giá bán là \[x\] thì số quả bán được là:
\[30 + \frac{{10}}{{1\,000}}\left( {60\,000 - x} \right) = - \frac{1}{{100}}x + 630\].
Gọi \[f\left( x \right)\] là hàm lợi nhuận thu được (\[f\left( x \right)\]: đồng), ta có:
\[f\left( x \right) = \left( { - \frac{1}{{100}}x + 630} \right) \cdot \left( {x - 35000} \right) = - \frac{1}{{100}}{x^2} + 980x - 22\,050\,000\].
Lợi nhuận thu được lớn nhất khi hàm \[f\left( x \right)\] đạt giá trị lớn nhất trên \[\left[ {35000\,;60000} \right]\].
Ta có: \[f\left( x \right) = - {\left( {\frac{1}{{10}}x - 4\,900} \right)^2} + 1\,960\,000 \le 1\,960\,000,\,{\rm{ }}\forall x \in \left[ {35\,000\,;60\,000} \right]\]
\[ \Rightarrow \mathop {\max }\limits_{x \in \left[ {35\,000\,;60\,000} \right]} {\rm{ }}f\left( x \right) = f\left( {49\,000} \right) = 1\,960\,000\].
Vậy với giá bán \[49\] nghìn đồng mỗi quả bưởi thì cửa hàng thu được lợi nhuận lớn nhất.
Đáp án: 49.
Lời giải
Lời giải
a) Đúng. Vì bề lõm của parabol quay lên nên \(a > 0\).
b) Sai. Khi \(x = 0\) thì \(y = - 1 \Rightarrow c = - 1 < 0\).
c) Sai. Khi \(x = 1\) thì \(y = - 2 \Rightarrow a + b + c = - 2\).
Khi \(x = 2\) thì \(y = 1 \Rightarrow 4a + 2b + c = 1\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{c = - 1}\\{a + b + c = - 2}\\{4a + 2b + c = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 3}\\{c = - 1}\end{array}} \right.\).
Suy ra: \(a - 2b + c = 7\).
d) Đúng. Từ câu c), suy ra \(\left( P \right):y = 2{x^2} - 3x - 1\).
Phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\):
\(2{x^2} - 3x - 1 = x + 5 \Leftrightarrow 2{x^2} - 4x - 6 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 1}\\{x = 3}\end{array}} \right.\).
Vậy đường thẳng \(\left( d \right):y = x + 5\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.