Một chiếc thuyền xuất phát từ cảng chạy ra biển theo một đường thẳng được 3 km thì rẽ sang phải theo hướng lệch với hướng ban đầu một góc \(45^\circ \) và đi thẳng theo hướng đó thêm 6 km nữa thì dừng lại. Hỏi tại vị trí mới này, chiếc thuyền cách vị trí xuất phát ban đầu của nó bao nhiêu kilômét? (Kết quả làm tròn đến chữ số hàng phần trăm).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta mô hình hóa bài toán như hình vẽ trên. Khoảng cách từ vị trí mới đến vị trí ban đầu chính bằng độ dài đoạn AC. Áp dụng định lý côsin trong tam giác ABC, ta được
\(AC = \sqrt {B{A^2} + B{C^2} - 2BA \cdot BC \cdot \cos 135^\circ } \approx 8,39{\rm{ km}}{\rm{.}}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Tổng quãng đường mà phương tiện di chuyển từ \(A\) qua \(C\) đến \(B\) là: \(70 + 100 = 170\,{\rm{km}}\).
Thể tích nhiên liệu bị tiêu hao là: \(170:20 = 8,5\) lít.
Áp dụng định lí côsin trong tam giác \(ABC\):
\(A{B^2} = A{C^2} + B{C^2} - 2AC \cdot BC \cdot \cos 60^\circ = 7900 \Rightarrow AB = 10\sqrt {79} \,\,\,{\rm{(km)}}\).
Thể tích nhiên liệu bị tiêu hao là: \(10\sqrt {79} \,:20 = \frac{{\sqrt {79} }}{2} \approx 4,44\) lít.
Thể tích nhiên liệu tiết kiệm được: \(8,5 - 4,44 = 4,06\) lít.
Đáp án: 4,06.
Lời giải
Lời giải
Trong tam giác \(DAC\), ta có:
\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).
Trong tam giác \(DBC\) ta có:
\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).
Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:
\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)
Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.
Đáp án: 6,34.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.