Cho tam giác \[ABC\] cân tại \(A\) biết \(\widehat A = 120^\circ \) và \[AB = AC = a\]. Lấy điểm\[M\] trên cạnh \[BC\] sao cho \(BM = \frac{2}{5}BC\). Tính độ dài \[AM\].
A. \(AM = \frac{{a\sqrt 3 }}{3}\).
B. \(AM = \frac{{11a}}{5}\).
C. \(AM = \frac{{a\sqrt 7 }}{5}\).
D. \(AM = \frac{{a\sqrt 6 }}{4}\).
Quảng cáo
Trả lời:
Đáp án đúng là: C

Tam giác \[ABC\] cân tại \(A\) nên \(\widehat B = \frac{{180^\circ - \widehat A}}{2} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \).
Áp dụng định lí côsin trong\(\Delta ABC\), ta có:
\[B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC\cos 120^\circ \]\[ = {a^2} + {a^2} - 2a \cdot a \cdot \left( { - \frac{1}{2}} \right) = 3{a^2}\].
\( \Rightarrow BC = a\sqrt 3 \)\( \Rightarrow BM = \frac{{2a\sqrt 3 }}{5}\).
Áp dụng định lí côsin trong \(\Delta ABM\), ta có:
\[A{M^2} = A{B^2} + B{M^2} - 2AB.BM.cos30^\circ = {a^2} + {\left( {\frac{{2a\sqrt 3 }}{5}} \right)^2} - 2a \cdot \frac{{2a\sqrt 3 }}{5} \cdot \frac{{\sqrt 3 }}{2} = \frac{{7{a^2}}}{{25}}\].
\[ \Rightarrow AM = \frac{{a\sqrt 7 }}{5}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Trong tam giác \(DAC\), ta có:
\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).
Trong tam giác \(DBC\) ta có:
\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).
Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:
\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)
Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.
Đáp án: 6,34.
Lời giải
Lời giải
Xét tam giác \[PAD\] có
\[PD = \sqrt {P{A^2} + A{D^2} - 2 \cdot PA \cdot AD \cdot \cos \widehat {PAD}} = \sqrt {{8^2} + {3^2} - 2 \cdot 8 \cdot 3 \cdot \cos 100^\circ } \approx 9,02\],
và \[\cos \widehat {APD} = \frac{{P{A^2} + P{D^2} - A{D^2}}}{{2 \cdot PA \cdot PD}} = \frac{{{8^2} + 9,{{02}^2} - {3^2}}}{{2 \cdot 8 \cdot 9,02}} \approx 0,94\] suy ra \[\widehat {APD} \approx 19^\circ \].
Xét tam giác \[PBD\] có \[\widehat {BPD} = \widehat {BPA} - \widehat {APD} \approx 40^\circ - 19^\circ = 21^\circ \],
và \[BD = \sqrt {P{B^2} + P{D^2} - 2 \cdot PB \cdot PD \cdot \cos \widehat {BPD}} \] \[ \approx 3,53\] (km).
Vậy bạn Bình phải đi khoảng \[3,53\] km nữa để đến đích.
Đáp án: \(3,53\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 61,4 m.
B. 18,5 m.
C. 60 m.
D. 18 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\sqrt {94} \).
B. \[\sqrt {106} \].
C. \(\sqrt {166} \).
D. \[\sqrt {34} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




