Câu hỏi:

30/07/2025 270 Lưu

Cho tam giác \[ABC\] có \[BC = a = 109\], \[\widehat B = 33^\circ 24'\], \[\widehat C = 66^\circ 59'\]. Chu vi tam giác \[ABC\] gần bằng số nào sau đây?

A. \[136\].

B. \[227\].

C. \[272\].

D. \[372\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta có \[\widehat B = 33^\circ 24' = 33,4^\circ \]; \[\widehat C = 66^\circ 59' \approx 66,98^\circ \]\[ \Rightarrow \]\[\widehat A \approx 79,62^\circ \].

Áp dụng định lý sin ta có \[\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Rightarrow b = \frac{{a \cdot \sin B}}{{\sin A}} \approx 61\].

Tương tự ta có \[\frac{a}{{\sin A}} = \frac{c}{{\sin C}} \Rightarrow c = \frac{{a \cdot \sin C}}{{\sin A}} \approx 102\].

Chu vi tam giác \[ABC\] là: \[2p = a + b + c \approx 109 + 61 + 102 = 272\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Trong tam giác \(DAC\), ta có:

\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).

Trong tam giác \(DBC\) ta có:

\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).

Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:

\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)

Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.

Đáp án: 6,34.

Lời giải

Lời giải

Xét tam giác \[PAD\] có

\[PD = \sqrt {P{A^2} + A{D^2} - 2 \cdot PA \cdot AD \cdot \cos \widehat {PAD}} = \sqrt {{8^2} + {3^2} - 2 \cdot 8 \cdot 3 \cdot \cos 100^\circ } \approx 9,02\],

và \[\cos \widehat {APD} = \frac{{P{A^2} + P{D^2} - A{D^2}}}{{2 \cdot PA \cdot PD}} = \frac{{{8^2} + 9,{{02}^2} - {3^2}}}{{2 \cdot 8 \cdot 9,02}} \approx 0,94\] suy ra \[\widehat {APD} \approx 19^\circ \].

Xét tam giác \[PBD\] có \[\widehat {BPD} = \widehat {BPA} - \widehat {APD} \approx 40^\circ - 19^\circ = 21^\circ \],

và \[BD = \sqrt {P{B^2} + P{D^2} - 2 \cdot PB \cdot PD \cdot \cos \widehat {BPD}} \] \[ \approx 3,53\] (km).

Vậy bạn Bình phải đi khoảng \[3,53\] km nữa để đến đích.

Đáp án: \(3,53\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP