Khoảng cách từ \(A\) đến \(B\) không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm \(C\) mà từ đó có thể nhìn được \(A\) và \(B\) dưới một góc \(78^\circ 24'\). Biết \(CA = 250\,{\rm{m}},CB = 120\,{\rm{m}}\). Khoảng cách \(AB\) gần nhất với giá trị nào dưới đây?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Theo bài ra ta có, \(\widehat {ACB} = 78^\circ 24'\).
Áp dụng định lí côsin trong tam giác ABC, ta có:
\(A{B^2} = C{A^2} + C{B^2} - 2CB \cdot CA \cdot \cos C = {250^2} + {120^2} - 2 \cdot 250 \cdot 120 \cdot \cos 78^\circ 24' \approx 64835.\)
Suy ra \(AB \approx 255\) (m).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Tổng quãng đường mà phương tiện di chuyển từ \(A\) qua \(C\) đến \(B\) là: \(70 + 100 = 170\,{\rm{km}}\).
Thể tích nhiên liệu bị tiêu hao là: \(170:20 = 8,5\) lít.
Áp dụng định lí côsin trong tam giác \(ABC\):
\(A{B^2} = A{C^2} + B{C^2} - 2AC \cdot BC \cdot \cos 60^\circ = 7900 \Rightarrow AB = 10\sqrt {79} \,\,\,{\rm{(km)}}\).
Thể tích nhiên liệu bị tiêu hao là: \(10\sqrt {79} \,:20 = \frac{{\sqrt {79} }}{2} \approx 4,44\) lít.
Thể tích nhiên liệu tiết kiệm được: \(8,5 - 4,44 = 4,06\) lít.
Đáp án: 4,06.
Lời giải
Lời giải
Trong tam giác \(DAC\), ta có:
\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).
Trong tam giác \(DBC\) ta có:
\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).
Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:
\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)
Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.
Đáp án: 6,34.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.