Từ vị trí \[A\] người ta quan sát một cây cao.
Biết \[AH = 4{\rm{m}}\], \[HB = 20{\rm{m}}\], \[\widehat {BAC} = 45^\circ \]. Khi đó chiều cao của cây (làm tròn đến hàng phần mười) bằng
Quảng cáo
Trả lời:

Đáp án đúng là: A
Vì tam giác \[AHB\] vuông tại \[H\] nên ta có \[AB = \sqrt {A{H^2} + H{B^2}} = 4\sqrt {26} \].
Ta có \[\sin \widehat {BAH} = \frac{{BH}}{{AB}} = \frac{5}{{\sqrt {26} }} \Rightarrow \widehat {BAH} \approx 78,69^\circ \Rightarrow \widehat {ABC} \approx 78,69^\circ \Rightarrow \widehat {ACB} \approx 56,31^\circ \].
Áp dụng định lý sin cho tam giác \[ABC\], ta có \[\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}}\].
Suy ra \[BC \approx 17,3\] (m).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Trong tam giác \(DAC\), ta có:
\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).
Trong tam giác \(DBC\) ta có:
\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).
Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:
\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)
Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.
Đáp án: 6,34.
Lời giải
Lời giải
a) Đúng. Ta có \(\widehat {ADC} = 90^\circ - 45^\circ = 45^\circ \).
b) Đúng. Ta có \(\cos \widehat {CAB} = \frac{{AC}}{{AB}} \Rightarrow AB = \frac{{10}}{{\cos 10^\circ }} \approx 10,15\,\,{\rm{(m)}}\).
c) Sai. Ta có \(\cos \widehat {CAD} = \frac{{AC}}{{AD}} \Rightarrow AD = \frac{{10}}{{\cos 45^\circ }} = 10\sqrt 2 \,\,{\rm{(m)}}\)
Khi đó, \({S_{ACD}} = \frac{1}{2}AD \cdot AC \cdot \sin 45^\circ = \frac{1}{2} \cdot 10\sqrt 2 \cdot 10 \cdot \frac{{\sqrt 2 }}{2} = 50\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
d) Đúng. Ta có \({S_{ABD}} = \frac{1}{2}AD \cdot AB \cdot \sin 55^\circ \approx \frac{1}{2} \cdot 10\sqrt 2 \cdot 10,15 \cdot \sin 55^\circ \approx 58,79\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
Mặt khác \({S_{ABD}} = \frac{1}{2}AC \cdot BD \Rightarrow BD = \frac{{2{S_{ABD}}}}{{AC}} \approx 11,76\,\,{\rm{(m)}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.