Cho tam giác \(ABC\) biết \(BC = 3\;{\rm{cm}},\,\,AC = 4{\rm{\;cm}},\widehat C = 30^\circ \).
a) \(AB \approx 3,05\,\,{\rm{(cm)}}\).
b) \(\cos A \approx 0,68\).
c) \(\widehat A \approx 77,2^\circ \).
d) \(\widehat B \approx 102,8^\circ \).
Quảng cáo
Trả lời:

Lời giải
a) Sai. Áp dụng định lí côsin trong tam giác, ta có: \(A{B^2} = B{C^2} + A{C^2} - 2BC \cdot AC \cdot \cos C\)
hay \(A{B^2} = {3^2} + {4^2} - 2 \cdot 3 \cdot 4 \cdot \cos 30^\circ = 25 - 12\sqrt 3 \). Do đó, \(AB \approx 2,05\,\,{\rm{(cm)}}\).
b) Đúng. Ta có \(\cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + \left( {25 - 12\sqrt 3 } \right) - {3^2}}}{{2 \cdot 4 \cdot \sqrt {25 - 12\sqrt 3 } }} \approx 0,68\).
c) Sai. Vì \(\cos A \approx 0,68\) nên \(\widehat A \approx 47,2^\circ \).
d) Đúng
. Ta có \(\widehat B = 180^\circ - \widehat A - \widehat C \approx 180^\circ - 47,2^\circ - 30^\circ = 102,8^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Trong tam giác \(DAC\), ta có:
\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).
Trong tam giác \(DBC\) ta có:
\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).
Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:
\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)
Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.
Đáp án: 6,34.
Lời giải
Lời giải
a) Sai.
Áp dụng định lí côsin trong tam giác \(ABC\), ta có:
\(B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC \cdot \cos A\)\( \Leftrightarrow {9^2} = A{B^2} + {6^2} - 2 \cdot AB \cdot 6 \cdot \frac{1}{3}\)
\( \Leftrightarrow A{B^2} - 4AB - 45 = 0 \Rightarrow AB = 9\) (vì \(AB > 0\)).
b) Sai. Ta có \(\cos A = \frac{1}{3}\)\( \Rightarrow \sin A = \frac{{2\sqrt 2 }}{3}\).
Từ định lí sin, ta suy ra bán kính đường tròn ngoại tiếp tam giác \(ABC\) là:
\(R = \frac{{BC}}{{2\sin A}} = \frac{9}{{2 \cdot \frac{{2\sqrt 2 }}{3}}} = \frac{{27}}{{4\sqrt 2 }}\). Vậy \({S_{ht1}} = \pi {R^2} = \pi \cdot {\left( {\frac{{27}}{{4\sqrt 2 }}} \right)^2} = \frac{{729\pi }}{{32}}\).
c) Sai. Ta có \(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB \cdot BC}} = \frac{{{9^2} + {9^2} - {6^2}}}{{2 \cdot 9 \cdot 9}} = \frac{7}{9}\); \(MB = MC = \frac{{BC}}{2} = \frac{9}{2}\).
Khi đó, \(A{M^2} = A{B^2} + M{B^2} - 2AB \cdot MB \cdot \cos B = {9^2} + {\left( {\frac{9}{2}} \right)^2} - 2 \cdot 9 \cdot \frac{9}{2} \cdot \frac{7}{9} = \frac{{153}}{4}\).
Suy ra \(AM = \frac{{\sqrt {153} }}{2}\).
Vậy \(\cos \widehat {AMB} = \frac{{A{M^2} + M{B^2} - A{B^2}}}{{2AM \cdot MB}} = \frac{{\frac{{153}}{4} + {{\left( {\frac{9}{2}} \right)}^2} - {9^2}}}{{2 \cdot \frac{{\sqrt {153} }}{2} \cdot \frac{9}{2}}} = - \frac{{5\sqrt {17} }}{{51}}\).
d) Đúng. Nửa chu vi của tam giác \(ABC\) là \(p = \frac{{AB + AC + BC}}{2} = 12\).
Diện tích của tam giác \(ABC\) là \(S = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} = 18\sqrt 2 \).
Với \(r\) là bán kính đường tròn nội tiếp tam giác \(ABC\), ta có \(S = pr\).
Suy ra \(r = \frac{S}{p} = \frac{{18\sqrt 2 }}{{12}} = \frac{{3\sqrt 2 }}{2}\). Vậy \({S_{ht2}} = \pi {r^2} = \pi \cdot {\left( {\frac{{3\sqrt 2 }}{2}} \right)^2} = \frac{{9\pi }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.