Câu hỏi:

30/07/2025 103 Lưu

Cho tam giác \(ABC\) biết cạnh \(BC = 137,5\;\,{\rm{cm;}}\,\widehat B = 83^\circ ;\,\,\widehat C = 57^\circ \).

a) \(\widehat A = 40^\circ \).

b) Bán kính đường tròn ngoại tiếp tam giác \(ABC\) là \(R \approx 106,96{\rm{\;cm}}\).

c) \(AB \approx 179,4\,\,{\rm{cm}}\).

d) \[AC \approx 232,12{\rm{\;cm}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Đúng. Ta có \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 180^\circ - \left( {83^\circ + 57^\circ } \right) = 40^\circ \).

b) Đúng. Theo định lí sin trong tam giác \(ABC\), ta có: \(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} = 2R\).

Suy ra \(R = \frac{{BC}}{{2\sin A}} = \frac{{137,5}}{{2\sin 40^\circ }} \approx 106,96\;\,{\rm{cm}}\).

c) Đúng. \(AB = \frac{{BC\sin C}}{{\sin A}} = \frac{{137,5 \cdot \sin 57^\circ }}{{\sin 40^\circ }} \approx 179,4\;\,{\rm{cm}}.\)

d) Sai. \(AC = \frac{{BC\sin B}}{{\sin A}} = \frac{{137,5 \cdot \sin 83^\circ }}{{\sin 40^\circ }} \approx 212,32{\rm{\;cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Trong tam giác \(DAC\), ta có:

\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).

Trong tam giác \(DBC\) ta có:

\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).

Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:

\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)

Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.

Đáp án: 6,34.

Lời giải

Lời giải

Xét tam giác \[PAD\] có

\[PD = \sqrt {P{A^2} + A{D^2} - 2 \cdot PA \cdot AD \cdot \cos \widehat {PAD}} = \sqrt {{8^2} + {3^2} - 2 \cdot 8 \cdot 3 \cdot \cos 100^\circ } \approx 9,02\],

và \[\cos \widehat {APD} = \frac{{P{A^2} + P{D^2} - A{D^2}}}{{2 \cdot PA \cdot PD}} = \frac{{{8^2} + 9,{{02}^2} - {3^2}}}{{2 \cdot 8 \cdot 9,02}} \approx 0,94\] suy ra \[\widehat {APD} \approx 19^\circ \].

Xét tam giác \[PBD\] có \[\widehat {BPD} = \widehat {BPA} - \widehat {APD} \approx 40^\circ - 19^\circ = 21^\circ \],

và \[BD = \sqrt {P{B^2} + P{D^2} - 2 \cdot PB \cdot PD \cdot \cos \widehat {BPD}} \] \[ \approx 3,53\] (km).

Vậy bạn Bình phải đi khoảng \[3,53\] km nữa để đến đích.

Đáp án: \(3,53\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP