Câu hỏi:

30/07/2025 7 Lưu

Một tàu du lịch xuất phát từ bãi biển Đồ Sơn (Hải Phòng), chạy theo hướng \(N80^\circ E\) với vận tốc \(20\,\,{\rm{km/h}}\). Sau khi đi được 30 phút, tàu chuyển sang hướng \(E80^\circ S\) giữ nguyên vận tốc và chạy tiếp 36 phút nữa đến đảo Cát Bà (tham khảo hình vẽ). Hỏi khi đó tàu du lịch cách vị trí xuất phát bao nhiêu kilômét? (Kết quả làm tròn đến hàng phần mười).

Một tàu du lịch xuất phát từ bãi biển Đồ Sơn (Hải Phòng), chạy theo hướng \(N80^\circ E\) với vận tốc \(20\,\,{\rm{km/h}}\). Sau khi đi được 30 phút, tàu chuyển sang hướng \(E80^\circ S\) giữ nguyên vận tốc và chạy tiếp 36 phút nữa đến đảo Cát Bà (tham khảo hình vẽ). Hỏi khi đó tàu du lịch cách vị trí xuất phát bao nhiêu kilômét? (Kết quả làm tròn đến hàng phần mười). (ảnh 1)

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử tàu du lịch xuất phát từ vị trí \(A\), chuyển động theo hướng \(N80^\circ E\) tới vị trí \(B\) sau đó chuyển hướng \(E80^\circ S\) tới vị trí \(C\) như hình vẽ dưới đây:

Một tàu du lịch xuất phát từ bãi biển Đồ Sơn (Hải Phòng), chạy theo hướng \(N80^\circ E\) với vận tốc \(20\,\,{\rm{km/h}}\). Sau khi đi được 30 phút, tàu chuyển sang hướng \(E80^\circ S\) giữ nguyên vận tốc và chạy tiếp 36 phút nữa đến đảo Cát Bà (tham khảo hình vẽ). Hỏi khi đó tàu du lịch cách vị trí xuất phát bao nhiêu kilômét? (Kết quả làm tròn đến hàng phần mười). (ảnh 2)

Ta có \(\widehat {ABC} = 180^\circ - 10^\circ - 20^\circ = 150^\circ \).

Tàu chạy từ vị trí \(A\) đến vị trí \(B\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 30 phút (tức 0,5 giờ) nên: \(AB = 20 \cdot 0,5 = 10\) (km).

Tàu chạy từ vị trí \(B\) đến vị trí \(C\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 36 phút (tức 0,6 giờ) nên: \(BC = 20 \cdot 0,6 = 12\) (km).

Áp dụng định lí côsin cho tam giác \(ABC\) ta được:

\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot AC \cdot \cos \widehat {BAC} = {10^2} + {12^2} - 2 \cdot 10 \cdot 12 \cdot \cos 150^\circ \approx 452\).

Suy ra \(AC \approx \sqrt {452} \approx 21,3\,\,\,\left( {{\rm{km}}} \right)\).

Vậy khi tới đảo Cát Bà thì tàu du lịch cách vị trí xuất phát (bãi biển Đồ Sơn) một khoảng \(21,3\) km.

Đáp án: 21,3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Tổng quãng đường mà phương tiện di chuyển từ \(A\) qua \(C\) đến \(B\) là: \(70 + 100 = 170\,{\rm{km}}\).

Thể tích nhiên liệu bị tiêu hao là: \(170:20 = 8,5\) lít.

Tỉnh  A   và   B   bị ngăn cách nhau bởi một ngọn núi. Để đi từ tỉnh   A   đến tỉnh   B  , người ta đi theo lộ trình từ tỉnh   A   qua tỉnh   C  , rồi đến tỉnh   B  . Biết rằng lộ trình từ   A   đến   C   dài 70 km, từ   C   đến   B   dài 100 km, và hai con đường tạo với nhau góc   60 ∘  . Cứ mỗi 20 km quãng đường thì phương tiện tiêu hao 1 lít nhiên liệu. Để tiết kiệm nhiên liệu, người ta làm một đường hầm xuyên núi để đi từ tỉnh   A   đến tỉnh   B  . Hỏi nếu đi theo đường hầm thì phương tiện tiết kiệm được bao nhiêu lít nhiên liệu (làm tròn kết quả đến hàng phần trăm)? (ảnh 1)

Áp dụng định lí côsin trong tam giác \(ABC\):

\(A{B^2} = A{C^2} + B{C^2} - 2AC \cdot BC \cdot \cos 60^\circ = 7900 \Rightarrow AB = 10\sqrt {79} \,\,\,{\rm{(km)}}\).

Thể tích nhiên liệu bị tiêu hao là: \(10\sqrt {79} \,:20 = \frac{{\sqrt {79} }}{2} \approx 4,44\) lít.

Thể tích nhiên liệu tiết kiệm được: \(8,5 - 4,44 = 4,06\) lít.

Đáp án: 4,06.

Lời giải

Lời giải

Trong tam giác \(DAC\), ta có:

\(\cos \widehat {ACD} = \frac{{DC}}{{AC}}\), suy ra \(AC = \frac{{DC}}{{\cos A}} = \frac{{18}}{{\cos 40^\circ }} \approx 23,5\,{\rm{m}}\).

Trong tam giác \(DBC\) ta có:

\(\cos \widehat {BCD} = \frac{{DC}}{{BC}}\), suy ra \(BC = \frac{{DC}}{{\cos B}} = \frac{{18}}{{\cos 50^\circ }} \approx 28\,\;{\rm{m}}\).

Lại có góc \(\widehat {ACB} = 50^\circ - 40^\circ = 10^\circ \), áp dụng định lí côsin trong tam giác \(ABC\), ta có:

\(AB = \sqrt {C{A^2} + C{B^2} - 2CA \cdot CB \cdot \cos \widehat {ACB}} \) \( \approx \sqrt {23,{5^2} + {{28}^2} - 2 \cdot 23,5 \cdot 28 \cdot \cos 10^\circ } \approx 6,34\,{\rm{m}}.\)

Vậy chiều cao của cột cờ (làm tròn đến hàng phần trăm là) 6,34 m.

Đáp án: 6,34.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP