Tìm các cặp mặt phẳng vuông góc trong các mặt phẳng sau:
(F): \(3x + 2y + 5z + 3 = 0\),
\((H):x - 4y + z + 23 = 0\),
\((G):x - y + 3z + 24 = 0\).
Tìm các cặp mặt phẳng vuông góc trong các mặt phẳng sau:
(F): \(3x + 2y + 5z + 3 = 0\),
\((H):x - 4y + z + 23 = 0\),
\((G):x - y + 3z + 24 = 0\).
Quảng cáo
Trả lời:

Ba vectơ pháp tuyến của ba mặt phẳng \((F),(H),(G)\) lần lượt là \({\vec n_1} = (3;2;5),{\vec n_2} = (1; - 4;1),{\vec n_3} = (1; - 1;3)\). Ta có duy nhất \({\vec n_1} \cdot {\vec n_2} = 0\) nên \((F) \bot (H)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi mặt phẳng cần tìm là mặt phẳng \(({\rm{P}})\).
Ta có \(\vec i = (1;0;0)\) và \(\overrightarrow {{n_Q}} = (1;2; - 3)\). Vì \({\rm{(P) // Ox }}\) và \({\rm{ (P) }} \bot ({\rm{Q}})\) nên
Mặt phẳng đi qua \({\rm{M}}(2;3; - 1)\) và nhận \(\overrightarrow {{n_P}} = (0;3;2)\) làm một vectơ pháp tuyến có phương trình là: \(3(y - 3) + 2(z + 1) = 0 \Leftrightarrow 3y + 2z - 7 = 0\).
Lời giải
Dễ thấy điểm \(M\) không nằm trên \((P)\). Vì \((Q)//(P)\) nên \((Q)\) có vectơ pháp tuyến là \(\vec n = (2;1;1)\).
Phương trình mặt phẳng \((Q)\) đi qua \(M\) và có vectơ pháp tuyến \(\vec n\) là:
\(2(x - 1) + (y - 2) + (z - 3) = 0{\rm{ hay }}2x + y + z - 7 = 0.{\rm{ }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.