Một công trường xây dựng nhà cao tầng đã thiết lập hệ toạ độ Oxyz. Hãy kiểm tra tính song song hoặc vuông góc giữa các mặt kính \((P),(Q),(R)\) (Hình vẽ) của một toà nhà, biết:
\((P):3x + y - z + 2 = 0\); (Q): \(6x + 2y - 2z + 11 = 0\); \((R):x - 3y + 1 = 0\).
Một công trường xây dựng nhà cao tầng đã thiết lập hệ toạ độ Oxyz. Hãy kiểm tra tính song song hoặc vuông góc giữa các mặt kính \((P),(Q),(R)\) (Hình vẽ) của một toà nhà, biết:
\((P):3x + y - z + 2 = 0\); (Q): \(6x + 2y - 2z + 11 = 0\); \((R):x - 3y + 1 = 0\).

Quảng cáo
Trả lời:
\((P)//(Q);(P)\) vuông góc với \((R);(Q)\) vuông góc với \((R)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì \(B(4k;3k;2k)\) thuộc mặt phẳng \((CBEF):z = 3\) nên \(2k = 3\), suy ra \(k = \frac{3}{2}\). Vậy \(B\left( {6;\frac{9}{2};3} \right)\).
b) Ta có: \(\overrightarrow {OA} = (50;0;0),\overrightarrow {OB} = \left( {6;\frac{9}{2};3} \right)\) nên \([\overrightarrow {OA} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{c}}0&0\\{\frac{9}{2}}&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{50}\\3&6\end{array}} \right|;{\mkern 1mu} \left| {\begin{array}{*{20}{c}}{50}&0\\6&{\frac{9}{2}}\end{array}} \right|} \right) = (0; - 150;225).\)
Suy ra \(\vec n = (0; - 2;3)\) là một vectơ pháp tuyến của mặt phẳng \((AOBC)\).
Vậy phương trình mặt phẳng \((AOBC)\) là: \(0 \cdot (x - 0) + ( - 2) \cdot (y - 0) + 3 \cdot (z - 0) = 0 \Leftrightarrow 2y - 3z = 0.\)
c) Ta có:\(\overrightarrow {OD} = (0;20;0),\overrightarrow {OB} = \left( {6;\frac{9}{2};3} \right)\) nên \([\overrightarrow {OD} ,\overrightarrow {OB} ] = \left( {\left| {\begin{array}{*{20}{c}}{20}&0\\{\frac{9}{2}}&3\end{array}} \right|;\left| {\begin{array}{*{20}{l}}0&0\\3&6\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{20}\\6&{\frac{9}{2}}\end{array}} \right|} \right) = (60;0; - 120){\rm{. }}\)
Suy ra \(\vec u = (1;0; - 2)\) là một vectơ pháp tuyến của mặt phẳng \((DOBE)\).
Vậy phương trình mặt phẳng \((DOBE)\) là: \(1 \cdot (x - 0) + 0 \cdot (y - 0) + ( - 2) \cdot (z - 0) = 0 \Leftrightarrow x - 2z = 0.\)
d) Một vec tơ pháp tuyến của mặt phẳng \((AOBC)\) và \((DOBE)\) lần lượt là: \(\vec p = (0;2; - 3)\) và \(\vec q = ( - 1;0;2)\).
Lời giải
a) Ta có:\(\overrightarrow {AB} = (2;2;0),\overrightarrow {AC} = (4;2; - 0,5)\) nên \([\overrightarrow {AB} ,\overrightarrow {AC} ] = \left( {\left| {\begin{array}{*{20}{c}}2&0\\2&{ - 0,5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&2\\{ - 0,5}&4\end{array}} \right|;\left| {\begin{array}{*{20}{l}}2&2\\4&2\end{array}} \right|} \right) = ( - 1;1; - 4)\)
là một vectơ pháp tuyến của mặt phẳng \((ABC)\).
Vậy phương trình mặt phẳng \((ABC)\) là: \(( - 1) \cdot (x - 2) + 1 \cdot (y - 1) + ( - 4) \cdot (z - 3) = 0 \Leftrightarrow x - y + 4z - 13 = 0.{\rm{ }}\)
b) Vì\(4 - 0 + 4 \cdot 2,8 - 13 = 2,2 \ne 0\) nên điểm \(D(4;0;2,8)\) không thuộc mặt phẳng \((ABC)\). Vậy bốn điểm A, B, C, D không đồng phẳng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




