Câu hỏi:

19/08/2025 35 Lưu

Cho hai mặt phẳng \(\left( {{P_1}} \right):3x + 2y - z + 1 = 0,\left( {{P_2}} \right):6x + 4y - 2z + 3 = 0\). Chứng minh rằng \(\left( {{P_1}} \right)//\left( {{P_2}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \({\vec n_1} = (3;2; - 1)\), \({\vec n_2} = (6;4; - 2)\). Vì \({\vec n_2} = 2{\vec n_1}\) và \(3 \ne 2\). 1 nên \(\left( {{P_1}} \right)//\left( {{P_2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi mặt phẳng cần tìm là mặt phẳng \(({\rm{P}})\).

Ta có \(\vec i = (1;0;0)\) và \(\overrightarrow {{n_Q}}  = (1;2; - 3)\). Vì \({\rm{(P) // Ox }}\) \({\rm{ (P) }} \bot ({\rm{Q}})\) nên nP=i,nQ=(0;3;2)

Mặt phẳng đi qua \({\rm{M}}(2;3; - 1)\) và nhận \(\overrightarrow {{n_P}}  = (0;3;2)\) làm một vectơ pháp tuyến có phương trình là: \(3(y - 3) + 2(z + 1) = 0 \Leftrightarrow 3y + 2z - 7 = 0\).

Lời giải

Dễ thấy điểm \(M\) không nằm trên \((P)\). Vì \((Q)//(P)\) nên \((Q)\) có vectơ pháp tuyến là \(\vec n = (2;1;1)\).

Phương trình mặt phẳng \((Q)\) đi qua \(M\) và có vectơ pháp tuyến \(\vec n\) là:

\(2(x - 1) + (y - 2) + (z - 3) = 0{\rm{ hay }}2x + y + z - 7 = 0.{\rm{ }}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP