Câu hỏi:

19/08/2025 51 Lưu

Viết phương trình mặt phẳng \((R)\) đi qua điểm \(A(1;2; - 1)\) và vuông góc với hai mặt phẳng \((P):4x - 2y + 6z - 11 = 0,(Q):2x + 2y + 2z - 7 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mặt phẳng \((R)\) có cặp vectơ chỉ phương là \({\vec n_P} = (4; - 2;6),{\vec n_Q} = (2;2;2)\) nên có vectơ pháp tuyến là \(\vec n = \left[ {{{\vec n}_P},{{\vec n}_Q}} \right] = ( - 16;4;12)\).

Phương trình mặt phẳng \((R)\) là: \( - 16(x - 1) + 4(y - 2) + 12(z + 1) = 0 \Leftrightarrow  - 4x + y + 3z + 5 = 0.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi mặt phẳng cần tìm là mặt phẳng \(({\rm{P}})\).

Ta có \(\vec i = (1;0;0)\) và \(\overrightarrow {{n_Q}}  = (1;2; - 3)\). Vì \({\rm{(P) // Ox }}\) \({\rm{ (P) }} \bot ({\rm{Q}})\) nên nP=i,nQ=(0;3;2)

Mặt phẳng đi qua \({\rm{M}}(2;3; - 1)\) và nhận \(\overrightarrow {{n_P}}  = (0;3;2)\) làm một vectơ pháp tuyến có phương trình là: \(3(y - 3) + 2(z + 1) = 0 \Leftrightarrow 3y + 2z - 7 = 0\).

Lời giải

Mặt phẳng \((Q)\) có vectơ pháp tuyến \(\overrightarrow {{n_Q}}  = (1;3;1)\). Mặt phẳng \((P)\) đi qua A, B và vuông góc với \((Q)\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB}  = (1;2;3)\) và \(\overrightarrow {{n_Q}}  = (1;3;1)\). Do đó \((P)\) có vectơ pháp tuyến là: \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {{n_Q}} } \right] = ( - 7;2;1)\).

Mặt phẳng \((P)\) đi qua \(A(1;2; - 2)\) và có vectơ pháp tuyến \({\vec n_P} = ( - 7;2;1)\) nên có phương trình: \( - 7x + 2y + z - (( - 7) \cdot 1 + 2 \cdot 2 + 1 \cdot ( - 2)) = 0 \Leftrightarrow 7x - 2y - z - 5 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP