Câu hỏi:

03/08/2025 7 Lưu

Cho hình thang \(ABCD\) vuông tại \(A\) và \(D\) có \(AB = AD = \frac{1}{2}DC = a\). Gọi \(BF\) là đường phân giác trong của tam giác \(ABD\,\,\left( {F \in AD} \right)\).

a) \(C{A^2} = D{A^2} + D{C^2}\).

b) \(\left| {\overrightarrow {CA} } \right| = a\sqrt 3 \).

c) \(\widehat {ABF} = 45^\circ \).

d) \(\left| {\overrightarrow {BF} } \right| \approx 2,08a\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C (ảnh 1)

a) Đúng. Ta có \(C{A^2} = D{A^2} + D{C^2} = {a^2} + {\left( {2a} \right)^2} = 5{a^2}\) (Theo định lí Pythagore).

b) Sai. Từ câu a) suy ra \(\left| {\overrightarrow {CA} } \right| = CA = a\sqrt 5 \).

c) Sai. Tương tự \(\left| {\overrightarrow {BD} } \right| = BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \).

Dễ thấy \(\Delta ABD\) vuông cân tại \(A\), do đó: \(\widehat {ABD} = 45^\circ  \Rightarrow \widehat {ABF} = 22,5^\circ \).

d) Sai. Xét \(\Delta ABF\) vuông tại \(A\), ta có: \(\left| {\overrightarrow {BF} } \right| = BF = \frac{{AB}}{{\cos \widehat {ABF}}} = \frac{a}{{\cos 22,5^\circ }} \approx 1,08a\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Vì \(H\) là trực tâm của \(\Delta ABC\) nên \(AH \bot BC\).

b) Sai. Gọi \(M,N\) lần lượt là trung điểm cạnh \(BC,AB\).

C (ảnh 1)

Do tam giác \(ABC\) đều nên \(AM,BN\) cũng là các đường cao của tam giác \(ABC\), vì vậy \(H\) vừa là trực tâm vừa là trọng tâm tam giác này.

Áp dụng định lí Pythagore cho \(\Delta ABM\), ta có: \(A{M^2} = A{B^2} - B{M^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{3{a^2}}}{4}\)

\( \Rightarrow AM = \frac{{a\sqrt 3 }}{2}{\rm{. }}\)

Theo tính chất trọng tâm, ta có: \(AH = \frac{2}{3}AM = \frac{2}{3} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).

c) Sai. Vì các vectơ \(\overrightarrow {HA} ,\overrightarrow {HB} ,\overrightarrow {HC} \) không cùng phương nên chúng không thể bằng nhau.

d) Đúng. Dễ thấy ba vectơ \(\overrightarrow {HA} ,\overrightarrow {HB} ,\overrightarrow {HC} \) có độ dài bằng nhau:

\(\left| {\overrightarrow {HA} } \right| = \left| {\overrightarrow {HB} } \right| = \left| {\overrightarrow {HC} } \right| = \frac{{a\sqrt 3 }}{3}{\rm{. }}\)

Lời giải

V (ảnh 1)

Gọi \(M\) là trung điểm của \(BC\), ta có:

\(AG = \frac{2}{3}AM = \frac{2}{3}\sqrt {A{B^2} - B{M^2}}  = \frac{2}{3}\sqrt {{a^2} - \frac{{{a^2}}}{4}}  = \frac{{a\sqrt 3 }}{3}\).

Suy ra \(MI = AG = \frac{{a\sqrt 3 }}{3}\).

Khi đó, \(\left| {\overrightarrow {BI} } \right| = BI = \sqrt {B{M^2} + M{I^2}}  = \sqrt {\frac{{{a^2}}}{4} + \frac{{{a^2}}}{3}}  = \frac{{a\sqrt {21} }}{6}\).

Vậy \(m = 21\).

Đáp án: 21.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP