Câu hỏi:

04/08/2025 13 Lưu

Cho ba lực \[\overrightarrow {{F_1}}  = \overrightarrow {MA} \], \[\overrightarrow {{F_2}}  = \overrightarrow {MB} \], \[\overrightarrow {{F_3}}  = \overrightarrow {MC} \] cùng tác động vào một vật tại điểm \[M\] và vật đứng yên. Cho biết cường độ của \[\overrightarrow {{F_1}} \], \[\overrightarrow {{F_2}} \] đều bằng \[25\,{\rm{N}}\] và \[\widehat {AMB} = 60^\circ \]. Khi đó cường độ lực của \[\overrightarrow {F_3^{}} \]bằng \(a\sqrt 3 \) N. Xác định giá trị của \(a\).

n (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vật đứng yên nên ba lực đã cho cân bằng. Khi đó ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow 0 \).

Suy ra \[\overrightarrow {{F_3}}  =  - \left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right)\].

n (ảnh 2)

Dựng hình bình hành \[AMBN\]. Ta có \[ - \overrightarrow {{F_1}}  - \overrightarrow {{F_2}}  =  - \overrightarrow {MA}  - \overrightarrow {MB}  =  - \overrightarrow {MN} \].

Suy ra \[\left| {\overrightarrow {{F_3}} } \right| = \left| { - \overrightarrow {MN} } \right| = MN = \frac{{2\sqrt 3 MA}}{2} = 25\sqrt 3 \] (N). Vậy \(a = 25\).

Đáp án: 25.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

a) Đúng. Theo quy tắc ba điểm, ta có \(\overrightarrow {RJ}  = \overrightarrow {RA}  + \overrightarrow {AJ} \).

b) Sai. Ta có \(\overrightarrow {IQ}  = \overrightarrow {IB}  + \overrightarrow {BQ} \).

c) Sai. Ta có \(\overrightarrow {PS}  = \overrightarrow {PC}  + \overrightarrow {CS} \).

d) Đúng. Do \(CARS\) là hình bình hành nên \(\overrightarrow {RA}  = \overrightarrow {SC} \).

Do \(ABIJ\) là hình bình hành nên \(\overrightarrow {AJ}  =  - \overrightarrow {IB} \).

Khi đó, \(\overrightarrow {RJ}  = \overrightarrow {RA}  + \overrightarrow {AJ}  = \overrightarrow {SC}  - \overrightarrow {IB} \).

Do \(BCPQ\) là hình bình hành nên \(\overrightarrow {BQ}  = \overrightarrow {CP} \).

Khi đó, \(\overrightarrow {IQ}  = \overrightarrow {IB}  + \overrightarrow {BQ}  = \overrightarrow {IB}  + \overrightarrow {CP} \).

Vậy ta có \(\overrightarrow {RJ}  + \overrightarrow {IQ}  + \overrightarrow {PS} \)\[ = \left( {\overrightarrow {SC}  - \overrightarrow {IB} } \right) + \left( {\overrightarrow {IB}  + \overrightarrow {CP} } \right) + \left( {\overrightarrow {PC}  + \overrightarrow {CS} } \right)\]\(\)

\( = \left( {\overrightarrow {SC}  + \overrightarrow {CS} } \right) + \left( {\overrightarrow {IB}  - \overrightarrow {IB} } \right) + \left( {\overrightarrow {CP}  + \overrightarrow {PC} } \right) = \overrightarrow 0 \).

Vậy \(\overrightarrow {RJ}  + \overrightarrow {IQ}  + \overrightarrow {PS}  = \vec 0\).

Lời giải

c (ảnh 1)

a) Sai. Theo quy tắc hiệu, ta có \(\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB} \). 

b) Đúng. Vì \[G\] là trọng tâm tam giác\[ABC\] nên \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \). 

Lại có M là trung điểm của BC nên \(\overrightarrow {MC}  + \overrightarrow {MB}  = \overrightarrow 0 \).

Vậy \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow {MC}  + \overrightarrow {MB} \).

c) Đúng. Ta có \(\overrightarrow {AG}  + \overrightarrow {GM}  = \overrightarrow {AM} \)  cùng phương với vectơ \(\overrightarrow {MG} \). 

d) Sai. Ta có \(\overrightarrow {AG}  + \overrightarrow {MC}  = \overrightarrow {MG}  + \overrightarrow {BC}  \Leftrightarrow \overrightarrow {AG}  + \overrightarrow {MC}  - \overrightarrow {MG}  = \overrightarrow {BC}  \Leftrightarrow \overrightarrow {AG}  + \overrightarrow {GC}  = \overrightarrow {BC} \)

\( \Leftrightarrow \overrightarrow {AC}  = \overrightarrow {BC}  \Rightarrow A \equiv B\) là sai vì \[A\],\[B\]  phân biệt.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP