Cho hình lục giác đều ABCDEF tâm O. Có bao nhiêu vectơ khác vectơ-không, cùng phương với vectơ \(\overrightarrow {OB} \) có điểm đầu và điểm cuối là các đỉnh của lục giác?
Quảng cáo
Trả lời:
Các vectơ cùng phương với vectơ \(\overrightarrow {OB} \) có điểm đầu và điểm cuối là các đỉnh của lục giác là: \(\overrightarrow {BE} ,\overrightarrow {EB} ,\overrightarrow {DC} ,\overrightarrow {CD} ,\overrightarrow {FA} ,\overrightarrow {AF} .\)
Đáp án: 6.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có \(BB'\) là đường kính đường tròn ngoại tiếp tam giác \(ABC\) nên \(\widehat {BCB'} = 90^\circ \) \( \Rightarrow B'C \bot BC\).
b) Sai. Ta có \(AH \bot BC\), suy ra \(B'C{\rm{//}}AH\) (1). Mà \(A,B,\,H\) không thẳng hàng nên \[B'C\] không song song với \(AB\).
c) Đúng. Tương tự: \(\widehat {BAB'} = 90^\circ \) hay \(AB' \bot AB\) mà \(CH \bot AB\) nên \(CH\,{\rm{//}}\,AB'\,\,(2)\).
Từ (1) và (2) suy ra tứ giác \(AB'CH\) là hình bình hành.
d) Đúng. Vì tứ giác \(AB'CH\) là hình bình hành nên \(\overrightarrow {AH} = \overrightarrow {B'C} ;\,\,\overrightarrow {AB'} = \overrightarrow {HC} \).
Lời giải
a) Sai. Do \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \frac{1}{2}BC\) và \(MN\,{\rm{//}}\,BC\).
b) Đúng. Điểm \(P\) đối xứng với điểm \(M\) qua \(N\) nên \(MP = 2MN = BC\).
Do đó \(\left| {\overrightarrow {MP} } \right| = \left| {\overrightarrow {BC} } \right|\). (1)
c) Sai. Xét nửa mặt phẳng bờ \(AB\) chứa \(C\), ta có \(N\) là trung điểm \(AC\) nên \(N\) và \(C\) cùng phía \(AB\) hay cùng phía \(MB\), mà \(MN\,{\rm{//}}\,BC\), do đó hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {BC} \) cùng hướng.
d) Đúng. Ta có \(P\) đối xứng \(M\) qua \(N\) nên hai vectơ \(\overrightarrow {MP} \) và \(\overrightarrow {MN} \) cùng hướng, dễ thấy \(\overrightarrow {MN} \ne \overrightarrow 0 \) nên hai vectơ \(\overrightarrow {MP} \) và \(\overrightarrow {BC} \) cùng hướng. (2)
Từ \((1)\) và \((2)\), suy ra \(\overrightarrow {MP} = \overrightarrow {BC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.