Cho hình vuông \(ABCD\) có cạnh bằng \(a\).
a) \(\overrightarrow {BA} - \overrightarrow {CB} = \overrightarrow {BD} \).
b) Độ dài vectơ \(\overrightarrow {AB} + \overrightarrow {AD} \) bằng \(2a\).
c) Gọi \(E\) là điểm đối xứng với \(A\) qua \(B\). Khi đó \(\overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow {DE} \).
d) Độ dài vectơ \(\overrightarrow {DB} + \overrightarrow {DC} \) bằng \(a\sqrt 5 \).
Cho hình vuông \(ABCD\) có cạnh bằng \(a\).

a) \(\overrightarrow {BA} - \overrightarrow {CB} = \overrightarrow {BD} \).
b) Độ dài vectơ \(\overrightarrow {AB} + \overrightarrow {AD} \) bằng \(2a\).
c) Gọi \(E\) là điểm đối xứng với \(A\) qua \(B\). Khi đó \(\overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow {DE} \).
d) Độ dài vectơ \(\overrightarrow {DB} + \overrightarrow {DC} \) bằng \(a\sqrt 5 \).
Quảng cáo
Trả lời:
a) Đúng. Ta có \(\overrightarrow {BA} - \overrightarrow {CB} = \overrightarrow {BA} + \overrightarrow {BC} = \overrightarrow {BD} \).
b) Sai. Ta có \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC = a\sqrt 2 \).
c) Đúng.
Ta có \[\left\{ \begin{array}{l}BE = DC\,\left( { = BA} \right)\\BE{\rm{//}}DC\end{array} \right.\]\[ \Rightarrow \]tứ giác \[BECD\] là hình bình hành. Do đó \(\overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow {DE} \).
d) Đúng. Ta có \(\left| {\overrightarrow {DB} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DE} } \right| = DE = 2DI = 2\sqrt {D{C^2} + C{I^2}} = 2\sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = a\sqrt 5 \) (với I là tâm của hình bình hành \[BECD\]).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \frac{1}{2}AB\).
b) Đúng. Vì \(N\) là trung điểm của \(BC\) nên \(\overrightarrow {NB} = \overrightarrow {CN} \).
c) Sai. Theo quy tắc hiệu, ta có \(\overrightarrow {CM} - \overrightarrow {CN} = \overrightarrow {NM} \).
d) Đúng. Ta có \(\left| {\overrightarrow {CM} - \overrightarrow {NB} } \right| = \left| {\overrightarrow {CM} - \overrightarrow {CN} } \right| = \left| {\overrightarrow {NM} } \right| = MN = \frac{{AB}}{2} = \frac{a}{2}\).
Lời giải
Vật đứng yên nên ba lực đã cho cân bằng. Khi đó ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \).
Suy ra \[\overrightarrow {{F_3}} = - \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)\].
Dựng hình bình hành \[AMBN\]. Ta có \[ - \overrightarrow {{F_1}} - \overrightarrow {{F_2}} = - \overrightarrow {MA} - \overrightarrow {MB} = - \overrightarrow {MN} \].
Suy ra \[\left| {\overrightarrow {{F_3}} } \right| = \left| { - \overrightarrow {MN} } \right| = MN = \frac{{2\sqrt 3 MA}}{2} = 25\sqrt 3 \] (N). Vậy \(a = 25\).
Đáp án: 25.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.