Cho tam giác \(ABC\,\,\left( {AB < AC} \right),AD\) là phân giác trong của góc \(A\). Qua trung điểm \(M\) của cạnh \(BC\), ta kẻ đường thẳng song song với \(AD\), cắt cạnh \(AC\) tại \(E\) và cắt tia \(BA\) tại \(F\). Biết rằng \(AB = 6\) và \(4BD = 3BM\). Tính \(\left| {\overrightarrow {CM}  - \overrightarrow {EM} } \right|\).
                                    
                                                                                                                        Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    
Ta có \(\overrightarrow {CM} - \overrightarrow {EM} = \overrightarrow {CM} + \overrightarrow {ME} = \overrightarrow {CE} \).
Ta có \(ME\parallel AD \Rightarrow \frac{{CE}}{{CA}} = \frac{{CM}}{{CD}}\left( 1 \right)\); \(AD\parallel MF \Rightarrow \frac{{BA}}{{BF}} = \frac{{BD}}{{BM}}\left( 2 \right)\).
Nhân vế theo vế (1) và (2) kết hợp với \(BM = CM\), ta được: \(\frac{{CE}}{{BF}} \cdot \frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}(3)\).
Theo giả thiết, \(AD\) là phân giác của góc \(A\) nên \(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\) (4).
Từ (3) và (4) suy ra \(\frac{{CE}}{{BF}} = 1 \Rightarrow CE = BF\) (5).
Từ (2): \(\frac{{BA}}{{BF}} = \frac{{BD}}{{BM}} = \frac{3}{4} \Rightarrow BF = \frac{4}{3}BA = \frac{4}{3} \cdot 6 = 8\) (6).
Từ (5) và (6) suy ra \(CE = BF = 8\).
Vậy \(\left| {\overrightarrow {CM} - \overrightarrow {EM} } \right| = \left| {\overrightarrow {CE} } \right| = CE = 8\).
Đáp án: 8.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng. Ta có \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \frac{1}{2}AB\).
b) Đúng. Vì \(N\) là trung điểm của \(BC\) nên \(\overrightarrow {NB} = \overrightarrow {CN} \).
c) Sai. Theo quy tắc hiệu, ta có \(\overrightarrow {CM} - \overrightarrow {CN} = \overrightarrow {NM} \).
d) Đúng. Ta có \(\left| {\overrightarrow {CM} - \overrightarrow {NB} } \right| = \left| {\overrightarrow {CM} - \overrightarrow {CN} } \right| = \left| {\overrightarrow {NM} } \right| = MN = \frac{{AB}}{2} = \frac{a}{2}\).
Lời giải
a) Đúng. Ta có \(\overrightarrow {BA} - \overrightarrow {CB} = \overrightarrow {BA} + \overrightarrow {BC} = \overrightarrow {BD} \).
b) Sai. Ta có \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC = a\sqrt 2 \).
c) Đúng.

Ta có \[\left\{ \begin{array}{l}BE = DC\,\left( { = BA} \right)\\BE{\rm{//}}DC\end{array} \right.\]\[ \Rightarrow \]tứ giác \[BECD\] là hình bình hành. Do đó \(\overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow {DE} \).
d) Đúng. Ta có \(\left| {\overrightarrow {DB} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DE} } \right| = DE = 2DI = 2\sqrt {D{C^2} + C{I^2}} = 2\sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = a\sqrt 5 \) (với I là tâm của hình bình hành \[BECD\]).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 

 Nhắn tin Zalo
 Nhắn tin Zalo