Câu hỏi:

07/08/2025 7 Lưu

Cho tam giác \(ABC\,\,\left( {AB < AC} \right),AD\) là phân giác trong của góc \(A\). Qua trung điểm \(M\) của cạnh \(BC\), ta kẻ đường thẳng song song với \(AD\), cắt cạnh \(AC\) tại \(E\) và cắt tia \(BA\) tại \(F\). Biết rằng \(AB = 6\) và \(4BD = 3BM\). Tính \(\left| {\overrightarrow {CM}  - \overrightarrow {EM} } \right|\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

x (ảnh 1)

Ta có \(\overrightarrow {CM}  - \overrightarrow {EM}  = \overrightarrow {CM}  + \overrightarrow {ME}  = \overrightarrow {CE} \).

Ta có \(ME\parallel AD \Rightarrow \frac{{CE}}{{CA}} = \frac{{CM}}{{CD}}\left( 1 \right)\); \(AD\parallel MF \Rightarrow \frac{{BA}}{{BF}} = \frac{{BD}}{{BM}}\left( 2 \right)\).

Nhân vế theo vế (1) và (2) kết hợp với \(BM = CM\), ta được: \(\frac{{CE}}{{BF}} \cdot \frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}(3)\).

Theo giả thiết, \(AD\) là phân giác của góc \(A\) nên \(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\) (4).

Từ (3) và (4) suy ra \(\frac{{CE}}{{BF}} = 1 \Rightarrow CE = BF\) (5).

Từ (2): \(\frac{{BA}}{{BF}} = \frac{{BD}}{{BM}} = \frac{3}{4} \Rightarrow BF = \frac{4}{3}BA = \frac{4}{3} \cdot 6 = 8\) (6).

Từ (5) và (6) suy ra \(CE = BF = 8\).

Vậy \(\left| {\overrightarrow {CM}  - \overrightarrow {EM} } \right| = \left| {\overrightarrow {CE} } \right| = CE = 8\).

Đáp án: 8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

a) Đúng. Ta có \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \frac{1}{2}AB\).

b) Đúng. Vì \(N\) là trung điểm của \(BC\) nên \(\overrightarrow {NB}  = \overrightarrow {CN} \).

c) Sai. Theo quy tắc hiệu, ta có \(\overrightarrow {CM}  - \overrightarrow {CN}  = \overrightarrow {NM} \). 

d) Đúng. Ta có \(\left| {\overrightarrow {CM}  - \overrightarrow {NB} } \right| = \left| {\overrightarrow {CM}  - \overrightarrow {CN} } \right| = \left| {\overrightarrow {NM} } \right| = MN = \frac{{AB}}{2} = \frac{a}{2}\).

Lời giải

c (ảnh 1)

a) Đúng. Ta có \(\left\{ \begin{array}{l}AB = AD\\\widehat {BAD} = 60^\circ \end{array} \right. \Rightarrow \Delta ABD\) đều cạnh a \( \Rightarrow AO = \frac{{a\sqrt 3 }}{2}\).

b) Sai. Ta có \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC = 2AO\)\( = a\sqrt 3 \).

c) Đúng. Ta có \(\left| {\overrightarrow {BA}  - \overrightarrow {BC} } \right| = \left| {\overrightarrow {CA} } \right| = CA = a\sqrt 3 \).

d) Đúng. Đặt \(\overrightarrow {AC}  = \overrightarrow F \), ta có \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \) và \(\left| {\overrightarrow F } \right| = 2\sqrt 3  \cdot \sqrt 3  = 6\,\,{\rm{(N)}}\).

Do A ở vị trí cân bằng nên hai lực \(\overrightarrow F \) và \(\overrightarrow {{F_3}} \) có cùng cường độ và ngược hướng.

Vậy cường độ lực \(\overrightarrow {{F_3}} \) bằng \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow F } \right| = 6\,\,{\rm{(N)}}\).