Câu hỏi:

19/08/2025 69 Lưu

Phần III. Trắc nghiệm trả lời ngắn

Có hai lực \(\overrightarrow {{F_1}} \), \(\overrightarrow {{F_2}} \) cùng tác động vào một vật đứng tại điểm \(O\), biết hai lực \(\overrightarrow {{F_1}} \), \(\overrightarrow {{F_2}} \) đều có cường độ là \(50\,\,\left( {\rm{N}} \right)\) và chúng hợp với nhau một góc \(60^\circ \). Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)? (ảnh 1)

Giả sử \(\overrightarrow {{F_1}}  = \overrightarrow {OA} \), \(\overrightarrow {{F_2}}  = \overrightarrow {OB} \).

Theo quy tắc hình bình hành, suy ra \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {OC} \), như hình vẽ.

Ta có \(\widehat {AOB} = 60^\circ \), \(OA = OB = 50\), nên tam giác \(OAB\) đều, suy ra \(OC = 50\sqrt 3 \).

Vậy \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {OC} } \right| = 50\sqrt 3 \,\,({\rm{N}}) \approx 86,6\,\,{\rm{(N)}}\).

Đáp án: 86,6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tìm vận tốc của ca nô so với bờ (đơn vị: km/h, làm tròn kết quả đến hàng phần mười)? (ảnh 1)

Gọi \(\overrightarrow {{v_1}} ,\overrightarrow {{v_2}} \) lần lượt là vectơ vận tốc của dòng nước đối với bờ và ca nô đối với dòng nước. Khi đó vận tốc của ca nô đối với bờ chính là tổng \(\overrightarrow {{v_1}}  + \overrightarrow {{v_2}} \). Đặt \(\overrightarrow {{v_1}}  = \overrightarrow {AD} ,\overrightarrow {{v_2}}  = \overrightarrow {AB} \) với \(A\) là vị trí của ca nô.

Vẽ hình bình hành \(ABCD\), ta có: \(\overrightarrow {{v_1}}  + \overrightarrow {{v_2}}  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} {\rm{. }}\)

Theo định lí Pythagore, ta có: \(AC = \sqrt {{{10}^2} + {{35}^2}}  = 5\sqrt {53}  \approx 36,4\;\,{\rm{km/h}}{\rm{. }}\)

Vậy vận tốc của ca nô đối với bờ là xấp xỉ \(36,4\;\,{\rm{km/h}}\).

Đáp án: 36,4.

Lời giải

x (ảnh 1)

Ta có \(\overrightarrow {CM}  - \overrightarrow {EM}  = \overrightarrow {CM}  + \overrightarrow {ME}  = \overrightarrow {CE} \).

Ta có \(ME\parallel AD \Rightarrow \frac{{CE}}{{CA}} = \frac{{CM}}{{CD}}\left( 1 \right)\); \(AD\parallel MF \Rightarrow \frac{{BA}}{{BF}} = \frac{{BD}}{{BM}}\left( 2 \right)\).

Nhân vế theo vế (1) và (2) kết hợp với \(BM = CM\), ta được: \(\frac{{CE}}{{BF}} \cdot \frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}(3)\).

Theo giả thiết, \(AD\) là phân giác của góc \(A\) nên \(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\) (4).

Từ (3) và (4) suy ra \(\frac{{CE}}{{BF}} = 1 \Rightarrow CE = BF\) (5).

Từ (2): \(\frac{{BA}}{{BF}} = \frac{{BD}}{{BM}} = \frac{3}{4} \Rightarrow BF = \frac{4}{3}BA = \frac{4}{3} \cdot 6 = 8\) (6).

Từ (5) và (6) suy ra \(CE = BF = 8\).

Vậy \(\left| {\overrightarrow {CM}  - \overrightarrow {EM} } \right| = \left| {\overrightarrow {CE} } \right| = CE = 8\).

Đáp án: 8.

Câu 5

A. \(a\sqrt 3 \).               
B. \(2a\sqrt 5 \).           
C. \(a\sqrt 5 \).                                     
D. \(a\sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow 0 \).                                   
B. \(\overrightarrow {AC} \).                                  
C. \(\overrightarrow {BD} \).                                  
D. \(\overrightarrow {BA} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP