Câu hỏi:

06/08/2025 3 Lưu

Cho 4 điểm bất kỳ \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D\]. Đẳng thức nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có \[\overrightarrow {BC}  - \overrightarrow {AC}  + \overrightarrow {AB}  = \overrightarrow {AB}  + \overrightarrow {BC}  - \overrightarrow {AC}  = \overrightarrow {AC}  - \overrightarrow {AC}  = \overrightarrow 0 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

x (ảnh 1)

Ta có \(\overrightarrow {CM}  - \overrightarrow {EM}  = \overrightarrow {CM}  + \overrightarrow {ME}  = \overrightarrow {CE} \).

Ta có \(ME\parallel AD \Rightarrow \frac{{CE}}{{CA}} = \frac{{CM}}{{CD}}\left( 1 \right)\); \(AD\parallel MF \Rightarrow \frac{{BA}}{{BF}} = \frac{{BD}}{{BM}}\left( 2 \right)\).

Nhân vế theo vế (1) và (2) kết hợp với \(BM = CM\), ta được: \(\frac{{CE}}{{BF}} \cdot \frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}(3)\).

Theo giả thiết, \(AD\) là phân giác của góc \(A\) nên \(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\) (4).

Từ (3) và (4) suy ra \(\frac{{CE}}{{BF}} = 1 \Rightarrow CE = BF\) (5).

Từ (2): \(\frac{{BA}}{{BF}} = \frac{{BD}}{{BM}} = \frac{3}{4} \Rightarrow BF = \frac{4}{3}BA = \frac{4}{3} \cdot 6 = 8\) (6).

Từ (5) và (6) suy ra \(CE = BF = 8\).

Vậy \(\left| {\overrightarrow {CM}  - \overrightarrow {EM} } \right| = \left| {\overrightarrow {CE} } \right| = CE = 8\).

Đáp án: 8.

Lời giải

c (ảnh 1)

a) Đúng. Ta có \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \frac{1}{2}AB\).

b) Đúng. Vì \(N\) là trung điểm của \(BC\) nên \(\overrightarrow {NB}  = \overrightarrow {CN} \).

c) Sai. Theo quy tắc hiệu, ta có \(\overrightarrow {CM}  - \overrightarrow {CN}  = \overrightarrow {NM} \). 

d) Đúng. Ta có \(\left| {\overrightarrow {CM}  - \overrightarrow {NB} } \right| = \left| {\overrightarrow {CM}  - \overrightarrow {CN} } \right| = \left| {\overrightarrow {NM} } \right| = MN = \frac{{AB}}{2} = \frac{a}{2}\).