Cho tam giác\[ABC\] với trung tuyến \[AM\] và trọng tâm \[G\].
a) \(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {BC} \).
b) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {MC} + \overrightarrow {MB} \).
c) Vectơ \(\overrightarrow {AG} + \overrightarrow {GM} \) cùng phương với vectơ \(\overrightarrow {MG} \).
d) \(\overrightarrow {AG} + \overrightarrow {MC} = \overrightarrow {MG} + \overrightarrow {BC} \).
Cho tam giác\[ABC\] với trung tuyến \[AM\] và trọng tâm \[G\].
a) \(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {BC} \).
b) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {MC} + \overrightarrow {MB} \).
c) Vectơ \(\overrightarrow {AG} + \overrightarrow {GM} \) cùng phương với vectơ \(\overrightarrow {MG} \).
d) \(\overrightarrow {AG} + \overrightarrow {MC} = \overrightarrow {MG} + \overrightarrow {BC} \).
Quảng cáo
Trả lời:
a) Sai. Theo quy tắc hiệu, ta có \(\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow {CB} \).
b) Đúng. Vì \[G\] là trọng tâm tam giác\[ABC\] nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).
Lại có M là trung điểm của BC nên \(\overrightarrow {MC} + \overrightarrow {MB} = \overrightarrow 0 \).
Vậy \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {MC} + \overrightarrow {MB} \).
c) Đúng. Ta có \(\overrightarrow {AG} + \overrightarrow {GM} = \overrightarrow {AM} \) cùng phương với vectơ \(\overrightarrow {MG} \).
d) Sai. Ta có \(\overrightarrow {AG} + \overrightarrow {MC} = \overrightarrow {MG} + \overrightarrow {BC} \Leftrightarrow \overrightarrow {AG} + \overrightarrow {MC} - \overrightarrow {MG} = \overrightarrow {BC} \Leftrightarrow \overrightarrow {AG} + \overrightarrow {GC} = \overrightarrow {BC} \)
\( \Leftrightarrow \overrightarrow {AC} = \overrightarrow {BC} \Rightarrow A \equiv B\) là sai vì \[A\],\[B\] phân biệt.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\overrightarrow {CM} - \overrightarrow {EM} = \overrightarrow {CM} + \overrightarrow {ME} = \overrightarrow {CE} \).
Ta có \(ME\parallel AD \Rightarrow \frac{{CE}}{{CA}} = \frac{{CM}}{{CD}}\left( 1 \right)\); \(AD\parallel MF \Rightarrow \frac{{BA}}{{BF}} = \frac{{BD}}{{BM}}\left( 2 \right)\).
Nhân vế theo vế (1) và (2) kết hợp với \(BM = CM\), ta được: \(\frac{{CE}}{{BF}} \cdot \frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}(3)\).
Theo giả thiết, \(AD\) là phân giác của góc \(A\) nên \(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}}\) (4).
Từ (3) và (4) suy ra \(\frac{{CE}}{{BF}} = 1 \Rightarrow CE = BF\) (5).
Từ (2): \(\frac{{BA}}{{BF}} = \frac{{BD}}{{BM}} = \frac{3}{4} \Rightarrow BF = \frac{4}{3}BA = \frac{4}{3} \cdot 6 = 8\) (6).
Từ (5) và (6) suy ra \(CE = BF = 8\).
Vậy \(\left| {\overrightarrow {CM} - \overrightarrow {EM} } \right| = \left| {\overrightarrow {CE} } \right| = CE = 8\).
Đáp án: 8.
Lời giải
a) Đúng. Ta có \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \frac{1}{2}AB\).
b) Đúng. Vì \(N\) là trung điểm của \(BC\) nên \(\overrightarrow {NB} = \overrightarrow {CN} \).
c) Sai. Theo quy tắc hiệu, ta có \(\overrightarrow {CM} - \overrightarrow {CN} = \overrightarrow {NM} \).
d) Đúng. Ta có \(\left| {\overrightarrow {CM} - \overrightarrow {NB} } \right| = \left| {\overrightarrow {CM} - \overrightarrow {CN} } \right| = \left| {\overrightarrow {NM} } \right| = MN = \frac{{AB}}{2} = \frac{a}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.