Câu hỏi:

19/08/2025 69 Lưu

Trong không gian Oxyz, cho hình chóp O.ABC có \(A(2;0;0),B(0;4;0)\) và \(C(0;0;7)\).

a) Tìm toạ độ một vectơ chỉ phương của mỗi đường thẳng AB, AC.

b) Vectơ \(\vec v = ( - 1;2;0)\) có là vectơ chỉ phương của đường thẳng AB không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Trong không gian Oxyz, cho hình chóp O.ABC có A(2; 0; 0), B(0; 4; 0) và C(0; 0; 7). (ảnh 1)

a) Ta có \(\overrightarrow {AB}  = ( - 2;4;0)\) là một vectơ chỉ phương của đường thẳng AB; \(\overrightarrow {AC}  = ( - 2;0;7)\) là một vectơ chỉ phương của đường thẳng AC.

b) Vì \(\vec v = ( - 1;2;0) = \frac{1}{2}\overrightarrow {AB} \) nên \(\vec v\) là một vectơ chỉ phương của đường thẳng AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Một vectơ chỉ phương của \(d\) là \(\vec a = (2; - 3;4)\).

b) Với \(t = 0\), thay \(t = 0\) vào phương trình của \(d\), ta có \(\left\{ {\begin{array}{*{20}{l}}{x =  - 1 + 2.0 =  - 1}\\{y = 3 - 3.0 = 3}\\{z = 5 + 4.0 = 5.}\end{array}} \right.\)

Vậy điểm \({M_1}( - 1;3;5)\) thuộc \(d\) ứng với \(t = 0\).

Tương tự với \(t =  - 1\) và \(t = 2\), ta có các điểm thuộc \(d\) tương ứng là \({M_2}( - 3;6;1),{M_3}(3; - 3;13)\).

Lời giải

a) Một vectơ chỉ phương của đường thẳng AB là \(\overrightarrow {AB}  = (2;3;6)\).

b) Phương trình tham số của đường thẳng AB đi qua điểm \({\rm{A}}(1;2;3)\) và có vectơ chỉ phương \(\overrightarrow {AB}  = (2;3;6)\) là: x=1+2ty=2+3t (t là tham số). z=3+6t

c) Phương trình chính tắc của đường thẳng AB đi qua điểm \({\rm{A}}(1;2;3)\) và có vectơ chỉ phương \(\overrightarrow {AB}  = (2;3;6)\) là: \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{6}\)